Model Estimate Name of scheme: Construction of Community Hall under 13th Finance Commission Estimated Amount : Rs. 8,00,000.00 (Rupees Eight Lakh) only Name of work : Construction of Community Hall under 13th Finance Commission Award Estimated cost Rs. 8.00 Lakh (Rupees Eight Lakh) only ### REPORT Necessity: To strengthen the infrastructure at the Gaon Panchayat level, the Government has released ₹ 8.00 Lakhs under 13th Finance Commission Award. Accordingly a Model Estimate for Construction of Community Hall at Gaon Panchyat Level has been prepared to serve the following purposes. - Enabling Meetings, Assemblies, Gaon Sabhas - · Enabling social audits - Training and Capacity Building <u>Provision:</u> The major functional elements considered for Community Hall at Gaon Panchayat level are as follows: - Meeting / Training hall - Office space - · Toilet for male & female <u>SoR followed:</u> The estimate has been prepared on the basis of APWD(Building) SoR/2010-11 to arrive at the probable cost of the proposed construction of Community Hall. However, 10% Contractors' Profit has been deducted as per norms. Services considered: The following services has been considered. - Sanitary Installation. - Internal Electrification. - HTW for water facility. The work is to be executed as per APWD specifications and Rural Development norms currently being followed in the state of Assam. COUNTY OF STANCE OF STANCE ### Detail estimate for construction of Community Hall (The estimate has been prepared on the basis of APWD(Building) Schedule of Rates for the year 2010-11) | SI No. | | | | De | scri | ption of | wor | ks | | | Unit | Qty | Rate(Rs.) | Amount(i | |---------|---|--|---|---|--------------------------|--|--|---|---|---|----------------|--------|-----------|----------| | 1/1.1 | | | | | | 2 | | | | | - 2 | 4 | 5 | 6 | | N. F. J | (return fill
breaking and remo
specified
water whe | tings of
ing) the
clods in
val of
in the
ine nec | he q
n ret
surp
follow
essa | lumn,
uantity
urn filli
lus ear
wing cl
iry as d | as
ng,
th v
ass | ps, sep
necess
dressir
with all
dification
ated and | tic to
sary
ig, w
lead
lof:
d spe | ank et
after o
vatering
and li
soils in
ecified. | c inc
comp
g and
fts as
cludi | wall, retaining
duding refilling
letion of work
ramming etc
directed and
ng bailing ou | | | | | | | (i) Up to a
(a) In ordin
Footing | depth
nary so
23 |)II | | | the exis | | groun | | el.
39.74 m ³ | m³. | **** | | | | | directed a
forest roya
necessary | necess
nd sp
aity, sa | in
ary
ecific
ales | plinth
carriag
ed, inc
tax ar | in
e, i
ludi | layer r
watering
ng pay
other d | not r
g. ra
men
uties | more to
mming
tof last
and | han
etc
ind c
taxes | 150mm thick
complete as
ompensation,
as may be | | 39 74 | 64.67 | 2569.99 | | - 1 | (c) With ri-
truck carris
Plinth filling | age inc | nd o | r silt (
ig load | pre
ing | domina
and uni | ntly
oadi | non-pla
ng. | astic |) obtained by | | | | | | | | 1 | × | 8.50 | | 9.10 | × | | | 46.410 m ³ | | | 1 1 | | | | Berne | 1 | | 1.50 | | 05700000 | | 0.60 | = | 3.240 m ³ | | | | | | - 1 | Ramp | 0.5 | × | 2.75 | X | 1.50 | X | 0.60 | 11 | 1.238 m ³ | | | 1 1 | | | 4111 | Drouiding e | edia - | - 1- | | _ | | | | | 50.89 m ³
/els with/best | m ³ | 50.89 | 322.75 | 16424.78 | | i i | quanty Juan | aring somplet | ncκs
sub-{
e. | , sand
grade | as | directe | ind li | aid to
icludin | level
g all | and in panel
labour and | | | | | | | Floor | | | 23 | × | 1.200
8.50 | | 1.200 | | 33.12 m ² | | | | | | | 0.000 | | | 4 | x | 1.50 | × | 9 10
3.60 | | 77.35 m ² | | | | | | F | Ramp | | | 1 | × | 1.50 | × | 3.50 | - | 5.40 m ²
5.25 m ² | | | | | | | - 01 | | | 101 | K) | | - | | | 121 12 2 | m ² | 121.12 | 286.37 | | | a
w | is directed
there neces | and
ssary v | suon
spec
vill b | ified in
meas | r roi
nclu
sune | oting , s
iding c
id and p | teps
uring
aid | , walls
comp
separa | te of
bri
olete
tely.) | sizes 13mm
ckworks etc. | | 21116 | 200,31 | 34685,13 | | 2 1 P | ooting | 23 | X | 1.20 | X | 1.20 | × | 0.075 | = | 2.48 m ³ | m ³ | 2.48 | 3733.63 | 9259.40 | | in | cluding d
xcluding co | ewater
est of for
rk (for | ie sa
ing
orm v | if new
work ar | ces | nm dov
sary, a
einforce | vn g
and
emer | raded
curing
at for re | stone
co | zete works
a aggregate
mplete but
ced cement
asured and | | | | | | | | | | | 2 | | | | | 3 | 4 | 5 | 6 | |-------------------------------------|--|--------------------------|-------------------------------|----------------------|---------------------------------|---------------------|-------------------------------|--------|---|----------------|----------|------------|----------| | Foundati | on, footin | g, co | lumns | with | base ti | e ar | nd plinth | bear | n, pile cap, | | | | | | hase sla | b retaining | ig wa | alls, wa | lls o | f septic | tan | k, inspe | ction | pit and the | | | | | | like and | other wo | ks n | ot less | tha | n 100m | m th | nick up | to pli | nth level a) | | - 1 | | | | | Prop. 1:2 | | | | | | | | | - 1 | | 1 | | | The state of | | | 1.20 | 4 | 1.20 | × | 0.150 | w | 4 97 m ³ | | - 1 | | | | Footing | 23 | × | + 202 | - | 0.252 | ្ត | 0.150 | | 2.25 m ³ | - 1 | - 1 | | | | 216 | 20 | × - | 1.202 | _ | 0.23 | | 0.150 | - | 2.20 | - 1 | - 1 | | | | B 17 - G | 088 | | | 2 | 0.25 | 222 | 0.750 | 22 | 1.08 m ³ | - 1 | - 1 | | | | Column | 23 | × | 0.25 | X | 0.25 | × | 0.750 | | 0.43 m ³ | | - 1 | - 1 | | | | 23 | × | 0.25 | × | 0.25 | × | | = | 1.91 m ³ | - 1 | - 1 | | | | Tie bear | | × | 8.50 | × | 0.25 | × | 0.000 | | 1.37 m ³ | - 1 | - 1 | | | | | 2 | × | 9.10 | × | 0.25 | × | 0.000 | | | | - 1 | - 1 | | | | 4 | × | 3.60 | × | 0.25 | X | | - | 1.08 m ³ | | | | | | | 1 | ж | 3.00 | × | 0.25 | × | 0.300 | = | 0.23 m ³ | - 1 | - 1 | | | | | 2 | × | 1.50 | X | 0.25 | × | 0.300 | # | 0.23 m ³ | 200 | 2000 O | 0822200240 | | | | | | | | 200-00- | | | | 13.54 m ³ | m ² | 13.54 | 4734.15 | 64100 39 | | (B) In s | uper stru | ctur | e from | plin | th leve | l up | to 1st f | loor | level
oof, landing | | | | | | cantilev | er, stairca
Prop. 1:2 | ise ir | ncluding | g top | surfac | e ar | nd finish | ning | bressumer,
of nosing a) | | | | | | Column | 20 | × | 0.13 | × | 0.13 | × | 3.15 | · = : | 1,06 m ³ | | | | | | Column | 3 | × | 3.14 | · × | 0.102 | | 3 15 | 4 | 0.30 m ³ | (1 | 1 | | | | 150000 | 3 | | 8.50 | Ŷ | 0.130 | × | | = | 0.66 m ³ | | | | | | Lintel | 3 2 | × | 9.10 | × | 0.130 | × | | - | 0.47 m ³ | | | (1 | | | | | × | | - 22 | 0.130 | × | | - | 0.28 m ³ | 1/3 | // | | | | | 3 | × | 3,60 | × | | | | | 0.08 m ³ | |) (1 | 1 | | | | - 1 | × | 3.00 | X | 0.130 | × | | | 0.08 m ³ | | | | | | : MUSSIC HES | 2 | × | 1 50 | × | 0.130 | × | 0.200 | 7 | 0.06 111 | | () | V 1 | | | Post Pla | ite beam | | | | | | 0.400 | _ | 0.50 m ³ | | | | | | | 3 | × | 8.50 | × | 0.130 | × | | - | 0.35 m ³ | | | // // | | | | 2 | × | 9.10 | × | 0.130 | × | | | 0.06 m ³ | | | 0 0 | | | | 2 | × | 1.50 | X | 0.130 | × | 250.000 | 8 | | | | Y (1 | | | 2000000 | 1 | × | 3.60 | × | 0.130 | × | 0.150 | H | 0.07 m ³ | | | | | | Chajja | | | | | | | 50000 | | | | | 1 | | | | 2 | × | 8.50 | X | 0.450 | × | 0.075 | | 0.57 m ³ | () I | | | | | | 2 | × | 9.10 | × | 0.450 | | | | 0.61 m ³ | | | | | | | 2 | × | 1.50 | x | 0.450 | X | 0.075 | = | 0.10 m ³ | 22240 | 1945.000 | 222220 | 1355000 | | | | | | | | | 1 | | 5.20 m ³ | | 5.20 | 4929.24 | 25632 (| | rough
etc. he
ceiling | finish inc | ludin
propp
eedir | g cente
ping ar
ng 4.0r | ering
nd o
m 8 | g , shut
centerin
k remov | terir
g b
val | ng, stru
elow so
of the | ting a | to as to give
and propping
ting floor to
a for in situ | | | | | | 3.1.1.1
mass (ii) Usir
Footin | Founda
concrete
ng 25mm t
g 4 | tion,
works
hick p | footing
s etc. | , bi | | col | | | cap, raft and | 1 | | | | | Colum | n below F | | 8 20 | 532 | 0.000 | 18 | + 250 | 002 | 31.05 m ² | | | | | | | 23 | * | 4 | × | 0.250 | . 3 | 1.350 | - | 55.89 m ² | m ² | 55.89 | 140.84 | 7871 5 | | | | 1.00 | | - | 0 -1 | | | | 22 08 111 | 1110 | 33.00 | 740.04 | 12.7 | | (a) So | Columni
uare, rec
aving plan | tangi
e vei | ular, po | olygo | & strut
onal in p | plan | or any | shap | e like Tee/ I | | | | | | 1 | | | | | | 2 | | | | | 3 | 4 | 5 | - 6 | |------|---|---
--|--|--|---|---------|--|---|---|----------------|--------|------------|--------------------| | | | 20 | × | 4 | × | 0.13 | × | 3.150 | = | 32.76 m² | 1 | | | | | | | 20 | × | 2 | × | 0.35 | × | 4.200 | = | 58.80 m ² | | | | | | | | 20 | × | 2 | × | 0.50 | × | 4.200 | = | 84.00 m ² | - 3 | | | | | | | | | | | | - | | | 175.56 m" | m² | 175.56 | 213.73 | 37522 44 | | | 3.1.1.3 Colu | ımns, | pillars | , posts | 8 | strut | | | | | | | | | | | b) Circular of | or curv | ed in | plan (l | Jsir | | m th | ick plan | ik) | -255 | 2 | 5927 | | 1015 10 | | | 3 x | 2 | | 3.14 | | | | 3.150 | | 5.93 m ² | m ² | 5.93 | 311.15 | 1845.12 | | | 3 1 1.2 Side
below plinth
(ii) Using 25r | belov | ٧ | | plin | th bear | ms, | grade i | bean | ns etc. at or | | | | | | | Tie beam | 3 | * | 2 | × | 8.500 | × | 0.300 | = | 15.30 m ² | | | | | | | 110 000 | 2 | x: | 2 | × | 9.10 | × | 0.300 | = | 10.92 m ² | | | | | | | | 4 | * | 2 | × | 3.60 | × | 0.300 | = | 8.64 m ² | | | | | | | | 1 | × | 2 | × | 3.00 | × | 0.300 | = | 1.80 m ² | | | | | | | | 2 | × | 2 | × | 1.50 | x | 0.300 | 8 | 1.80 m ² | | | 1500000000 | 390000 | | | | 55 | | | | Note: | | | | 38.46 m ² | m ² | 38.46 | 191.27 | 7356 24 | | | 3 1 1 4) Sic | des ar | nd so | ffits of | be | ams, b | ean | n haund | hing | s, cantileve | | | | | | | girders, bre
(a) For dep
(ii) Using 25
Post Plate b | th not
mm thi | ехсе | eding 1
nk | | И | iai (ii | | | | | | | | | | | 3 | × | 2 | × | 8.50 | × | 0.15 | = | 7.65 m ² | 1 | | | | | | | 2 | × | 2 | × | 9.10 | × | 0.15 | = | 5.46 m ² | | | | | | | | 2 | × | 2 | х | 1.50 | × | | = | 0.90 m ² | | | | | | | | 1 | × | 2 | × | 3.60 | × | 0.15 | = | 1.08 m ² | | | | | | | Lintel | 3 | × | 2 | × | 8.50 | × | 0.20 | = | 10.20 m ² | | 1 | | | | | 1 | | 38 | 2 | X. | 9.10 | × | 0.20 | | 7.28 m ² | | | | | | | | 2 | × | 2 | × | 3.60 | × | 0.20 | = | 5.76 m | | 1 | 4 | × | 2 | × | 3.00 | × | 0.20 | = | 1.20 m ² | | 1 | | | | | | 1 | | 2 | × | | × | | = | 1.20 m ² | | 1 | | | | | 2115) 6 | 1 | × | 2 | × | 1.50 | × | 0.20 | = | 1.20 m ² | m ² | 40.73 | 163.01 | 6639 40 | | | 3.1.1.5) Filandings, c
(a) Floors
(ii) Using 25
Chajja | 1
2
lat sur
antilev
etc. up | faces
ver sla | 2
2
such
abs, ch
0mm ii
ank
2
3 | as
ajja
n th
x | soffits
s, balco
sickness
8.50
9.10 | of onie | 0.20
suspen
s and th
0.45
0.45 | =
ded
ne lik
=
= | 1.20 m ²
40.73 m ³
floors, roofs
e.
7.65 m
12.29 m | m ² | 40.73 | 163.01 | 6639.40 | | | (a) Floors
(ii) Using 25 | 1
2
lat sur
antilev
etc. up | faces
ver sla | 2
2
such
abs, ch
0mm ii
ank
2 | as
ajja
n th | 1.50
soffits
as, balco
lickness
8.50 | of onie | 0.20
suspen
s and th | =
ded
ne lik
=
= | 1.20 m ²
40.73 m ³
floors, roofs
e.
7.65 m
12.29 m
1.35 m | m ² | | | | | 19.3 | landings, o
(a) Floors
(ii) Using 25
Chajja | 1
2
lat sur
antilev
etc. up
5mm th | faces
ver sla
vto 20
ick pla | 2
2
such
abs, ch
Omm ii
ank
2
3
2 | as
ajja
n th
×
× | soffits
as, balco
ickness
8.50
9.10
1.50 | of onie | 0.20
suspen
s and th
0.45
0.45 | =
ded
ne
lik
=
=
= | 1.20 m ² 40.73 m ³ floors, roofs e. 7.65 m 12.29 m 1.35 m 21.29 m | m ² | | 163.01 | | | /4.1 | landings, of
(a) Floors
(ii) Using 25
Chajja | at sur
antilevetc. up
from the | faces
ver sla
vto 20
ick pla | 2
2
such
abs, ch
0mm ii
ank
2
3
2 | as ajja n th | soffits
as, balco
lickness
8.50
9.10
1.50 | of onie | 0.20
suspens and the
0.45
0.45
0.45
orick incring cor | = ded ded like like = = = = = = = = = = = = = = = = = = = | 1.20 m ² 40.73 m ³ floors, roofs e. 7.65 m 12.29 m 1.35 m 21.29 m ng racking of te as directe | m ² | | | | | 4.1 | landings, of (a) Floors (ii) Using 25 Chajja 4 Brickwork joints and in sub-stru | at sur
antilevetc. up
from the | faces
ver sla
vto 20
ick pla | 2
2
such
abs, ch
0mm ii
ank
2
3
2 | as ajja n th | soffits
as, balco
lickness
8.50
9.10
1.50
1.50
1.50
1.50 | of onie | 0.20
suspens and the
0.45
0.45
0.45
orick inc | = ded ded lik | 1.20 m ² 40.73 m ³ floors, roofs e. 7.65 m 12.29 m 1.35 m 21.29 m g racking of the as directed. | m ² | | | | | 4.1 | (a) Floors (ii) Using 25 Chajja 4 Brickwork joints and in sub-stru (b) In prop | lat sur
antilevetc. up
form the | faces
ver sla
vto 20
ick pla
nent n
ering
upto p | 2 2 such abs, ch Omm ii snk 2 3 2 nortar if necolinth le | as aajja n th | soffits
as, balco
ickness
8.50
9.10
1.50
n 1st cla
ary, and | of onie | 0.20
suspens and the
0.45
0.45
0.45
orick incring cor | = ded ded lik | 1.20 m ² 40.73 m ³ floors, roofs e. 7.65 m 12.29 m 1.35 m 21.29 m g racking of the as directed 1.91 m ³ 1.37 m ³ | m ² | | | | | /4.1 | (a) Floors (ii) Using 25 Chajja 4 Brickwork joints and in sub-stru (b) In prop | lat sur
antilevetc. up
form the | faces
ver sla
sto 20
ick pla
nent n
ering
upto s | such abs, ch Omm is ank 2 3 2 nortar if necolinth le | as ajja n th | soffits
as, balco
ickness
8.50
9.10
1.50
n 1st cla
ary, and | of onie | 0.20
suspens and the
0.45
0.45
0.45
orick incoring con
0.300 | = ded ded lik | 1.20 m ² 40.73 m ³ floors, roofs e. 7.65 m 12.29 m 1.35 m 21.29 m 1.35 m 21.29 m 1.37 m ³ 1.08 m ³ | m² | | | | | /4.1 | (a) Floors (ii) Using 25 Chajja 4 Brickwork joints and in sub-stru (b) In prop | at sur
antilevetc. up
form the | faces
yer sla
sto 20
sick pla
nent n
ering
upto p | 2 such abs, ch Omm is ank 2 3 2 nortar if necession in the least second | as ajjan th | 1.50
soffits
is, balco
ickness
8.50
9.10
1.50
n 1st cla
ary, and | of onie | 0.20 suspens and the 0.45 0.45 0.45 orick incring corring corring corrick incring corric corrick incring corrick corrick corrick corrick corri | = dded ded like = = = = = = = = = = = = = = = = = = = | 1.20 m ² 40.73 m ³ floors, roofs e. 7.65 m 12.29 m 1.35 m 21.29 m 1.35 m 21.29 m 1.37 m ³ 1.08 m ³ 0.23 m ³ | m ² | | | | | /4.1 | (a) Floors (ii) Using 25 Chajja 4 Brickwork joints and in sub-stru (b) In prop | at sur
antilevetc. up
form the
in cen
dewar
acture
1:4
3
2
4 | faces yer sla yto 20 ick pla nent n ering upto p | such abs, ch
Omm is ank
2
3
2
nortar if necolinth le
8.50
9.10
3.60 | as ajja n th | 1.50
soffits
is, balco
ickness
8.50
9.10
1.50
n 1st cla
ary, and
0.25
0.25
0.25 | of onie | 0.20 suspens and the 0.45 0.45 0.45 0.45 orick incring core 0.300 0.300 0.300 0.300 | = ded ded ne lik | 1.20 m ² 40.73 m ³ floors, roofs e. 7.65 m 12.29 m 1.35 m 21.29 m ng racking of te as directe 1.91 m ³ 1.37 m ³ 1.08 m ³ 0.23 m ³ 0.23 m ³ | m ² | | | | | /4.1 | landings, of (a) Floors (ii) Using 25 Chajja 4 Brickwork joints and in sub-stru (b) In prop Plinth | lat sur
antilevetc. up
form the
in cent
deward
acture
1.4
3
2
4
1 | faces ver sla vto 20 ick pla ment in tering upto p | such such omm is such omm is such omm is such of the color colo | as aajja n th | 1.50
soffits
is, balco
iickness
8.50
9.10
1.50
1.50
1.50
0.25
0.25
0.25
0.25 | of onie | 0.20 suspens and the 0.45 0.45 0.45 0.45 orick incring core 0.300 0.300 0.300 0.300 0.300 | = ded ded ne lik | 1.20 m ² 40.73 m ³ floors, roofs e. 7.65 m 12.29 m 1.35 m 21.29 m 1.35 m 21.29 m 1.37 m ³ 1.08 m ³ 1.08 m ³ 0.23 m ³ 0.49 m ³ | m ² | | | | | /4.1 | (a) Floors (ii) Using 25 Chajja 4 Brickwork joints and in sub-stru (b) In prop | lat sur
antilevetc. up
form the
in cent
deward
acture
1.4
3
2
4
1 | faces ver sla vto 20 ick pla ment m ering upto p | 2 2 such abs, ch 0mm ii sink 2 3 2 mortar if necolinth le 8.50 9.10 3.60 3.00 1.50 | as ajjan th | 1.50
soffits
as, balco
ickness
8.50
9.10
1.50
1.50
1.50
0.25
0.25
0.25
0.25
0.25 | of onie | 0.20 suspens and the 0.45 0.45 0.45 0.45 orick incring corring corresponding corre | = ded ded like like = = = = = = = = = = = = = = = = = = | 1.20 m ² 40.73 m ³ floors, roofs e. 7.65 m 12.29 m 1.35 m 21.29 m ng racking of te as directe 1.91 m ³ 1.37 m ³ 1.08 m ³ 0.23 m ³ 0.23 m ³ | m ² | | | | | /4.1 | landings, of (a) Floors (ii) Using 25 Chajja 4 Brickwork joints and in sub-stru (b) In prop Plinth | lat sur
antilevetc. up
form the
in cent
deward
acture
1.4
3
2
4
1 | faces ver sla vto 20 ick pla nent n ering upto s | 2 2 such abs, ch Omm is ank 2 3 2 mortar if necession in the left 150 3.60 3.60 3.60 3.60 3.60 | as a a a a a a a a a a a a a a a a a a | 1.50
soffits
is, balco
ickness
8.50
9.10
1.50
n 1st cla
ary, and
1.
0.25
0.25
0.25
0.25
0.25
0.25
0.25 | of onie | 0.20 suspens and the 0.45 0.45 0.45 0.45 orick incring core 0.300 0.300 0.300 0.300 0.300 0.300 0.300 | = ded ded like like = = = = = = = = = = = = = = = = = = | 1.20 m ² 40.73 m ³ floors, roofs e. 7.65 m 12.29 m 1.35 m 21.29 m 1.35 m 21.29 m 1.37 m ³ 1.08 m ³ 1.08 m ³ 0.23 m ³ 0.49 m ³ | m² | | | | | 4.1 | landings, of (a) Floors (ii) Using 25 Chajja 4 Brickwork joints and in sub-stru (b) In prop Plinth | lat sur
antilevetc. up
form the
in cent
deward
acture
1.4
3
2
4
1 | faces yer sla yto 20 yt | 2 2 such abs, ch 0mm ii snk 2 3 2 mortar if necrolinth le 8.50 9.10 3.60 3.60 3.60 3.60 | as ajja | 1.50
soffits
is, balco
ickness
8.50
9.10
1.50
n 1st cla
ary, and
1.
0.25
0.25
0.25
0.25
0.25
0.25
0.25
0.2 | of onie | 0.20 suspens and the 0.45 0.45 0.45 0.45 0.70 0.300 0.300 0.300 0.300 0.300 0.300 0.300 0.300 0.300 0.300 0.300 0.300 0.300 | = ded ded like = = = = = = = = = = = = = = = = = = = | 1.20 m ² 40.73 m ³ floors, roofs e. 7.65 m 12.29 m 1.35 m 21.29 m 1.35 m 21.29 m 1.37 m ³ 1.08 m ³ 0.23 m ³ | m ² | | | 6639.40
5190.50 | | 417 | 112mm thic | ck 1st | class | brie | k no | hanne | Henn | in com | inet. | | | | 3 | 4 | 5 | 6 | |------------------------|---|---|--
--|---|--|---|--|--|--
--|------------|------|-------|--------|---------| | | racking out | ioints | and | Chinis | 10.0 | ayed | wall | in cem | ent | mortar ir | clud | ng | | | | | | | racking out | th un t | n te | t fle | or L | omplet | e as | direct | ed in | 1 supers | tructi | ire | | | | | | | above plint | se emb | o (S | d in | UI IE | vei (p | rotru | iding I | MS | rod/Tor | steel | of | | | | | | | column to b
paid separa | se entiti | cuec | a iii) (| em | ent mo | ortar | and w | nill be | measur | ed a | nd | | | | | | | | 1000 | | | | | | | | | | | - 1 | | | | | | (a) in cement | t mortar | in pr | rop 1 | 4 (1 | cemen | t: 4 s | and) | | | | | | | | | | | | | | 3 | × | 8.5 | | x 3.1 | 5 | = 80 | 33 n | 2 | - 1 | | | 10 | | - 9 | | | | 2 | × | 9.1 | , | 3.1 | | | 33 n | 100 | - 1 | | | | | - 1) | | | | 3 | × | 3.60 | 30 - 33 | 3.1 | | | 02 n | | - 1 | | | | | - 1 | | | | 1 | × | 3.00 | | 3.1 | | | | 0000 | -1 | | | | | - 0 | Extra veranda | ah | | 2 | × | 1.5 | | | | | 45 п | | - 1 | | | | | - 1 | CONTRACTOR | 2011 | | 1 | × | | | 0 0.000 | | | 15 m | | - 1 | | | | | - 0 | Gable Wall | 2 | | | 12.5 | 3.6 | | | 5 = | | 78 m | 6.00 (0.00 | - 1 | | | | | | Carro Fran | • | × | 0.5 | × | 1.7 | X | 9.10 | 0 = | 15.0 |)2 m | 12 | - 13 | | | | | - 1 | Deduction: | | | | | | | | | 203.0 | 7 m | 2 | - 10 | | 1 | | | - 11 | Control of the second of the | | | | | | | | | | | | | | 1 | | | - 1 | Posts | | | 20 | × | 3.15 | × | 0.13 | 30 11 | 8.1 | 9 m | 2 | | | 1 | | | 100 | Lintel | | | Len | gth. | 25.7 | × | 0.20 | | | 4 m | | | | | | | 1 | Doors, Windo | ows & \ | /enti | lator | 5 | | | | - C1 11 1 | - | 100 | | | | | | | | | 3 | D | 2 | × | 1.00 | : x | 2.10 |) = | 200 | 0 m | 2 | | | | | | | | | 0, | 5 | × | 0.75 | | | | | 8 m | - 4 | | | | | | | | | N | 9 | × | 1.00 | × | | | 3 27 | | 221 | | | | | | | | | | 12 | × | | | 1.00 | | 57755 | 5 m | | | | | | | | | | | | | 1.0 | × | 0.45 | = | | 0 m | | | | | | | | | | | | | | | | | 42.9 | 6 m | | | | | | | - | | | | | | | sertite. | / = | | 160.1 | | m | 2 . | *** | | | | ir
s | ncluding stra
shapes and I
annealed bla | aighten
length
ick wir | ing,
as p
e an | clea
er d | ing
Co
aning
etail
lacir | ode fo
g. cutt
s. sup | osition
r R.
ing
plyin | on re
C.C.
and b
g and | work
endi | cement
R.B. wing to puting with | ban
valling
rope | s | | 60.12 | 518.62 | 83041.4 | | s
a
s | conforming to
notluding stra
shapes and la
annealed bla
supports, cha | aighten
length
ick wir
iirs, spa | ing,
as p
e an | clea
er d
nd p | ing
Co
aning
etail
lacir
con | in pode for cuttons, sup-
ing in pose | osition
r R.
ing
plyin
posit
upto | on re
C.C.
and b
g and
ion wi | work
bind
th p | cement
c/R.B. with
roper blackers | ban
valling
rope | s | | 60.12 | 518.62 | 83041.4 | | s
a
s
b | conforming to
including stra
shapes and la
innealed bla
supports, cha
of ISI approve | aighten
length
ack wir
iirs, spa
ad supe | ing,
as p
e an
icers | clea
er d
nd p
s etc
ctile | ing
Co
aning
etail
lacir
con | in pode for cuttons, sup-
ing in pose | osition
r R.
ing
plyin
posit
upto | on re
C.C.
and b
g and
ion wi | work
bind
th p | cement
c/R.B. with
roper blackers | ban
valling
rope | s | | 60.12 | 518.62 | 83041.4 | | s
a
s
b | conforming to
including stra
shapes and lannealed bla
supports, cha
of ISI approve
coting | aighten
length
ick wir
iirs, spa
ed supe | vant
ing,
as p
e an
icers
er du | clea
er d
nd p
etc
ctile
dia | ing
Co
aning
etail
lacir
con | in pode for cuttons, sup-
ing in pose | osition
r R.
ing
plyin
posit
upto | on re
C.C.
and b
g and
ion wi | work
bind
th p | cement
c/R.B. with
roper blackers | ban
valling
rope | s | | 50.12 | 518.62 | 83041.4 | | s
a
s
b
F | conforming to
including stra
shapes and lannealed bla
supports, cha
including solitions
of ISI approve
coting
ali | aighten
length
ack wir
iirs, spa
ad supe | vant
ing,
as p
e ar
acers
er du | clea
er d
nd p
s etc.
ctile
dia
2 | ing
Co
aning
etail
lacir
con
TM1 | in pode fo
g, cutt
s, sup
ng in in
npletei
l'bar (i | osition
r R.
ing
plyin
posit
upto | on re
C.C.
and b
g and
ion wi | work
bind
th p | cement
c/R.B. with
roper blackers | barr
valling
rope
200
ocks | s
7 | | 60.12 | 518.62 | 83041.4 | | s a s b F | conforming to
including stra
shapes and lannealed bla
supports, cha
of ISI approve
coting | aighten
length
ick wir
iirs, spa
ed supe | vant
ing,
as p
e ar
icers
er du | clea
er d
nd p
s etc.
ctile
dia
2 | ing
Co
aning
etail
lacir
con | in p
ode fo
g, cutt
s, sup
ig in
inplete
bar (i | osition
r R.
ing
plyin
posit
upto | on re
C.C.
and b
g and
ion wi
1 1st flo
her ISI | work
bind
th p | cement
c/R.B. with
ring with
roper blavel).
rked | barr
valling
rope
200
ocks | s
: | | 60.12 | 518.62 | 83041.4 | | s a s b F | conforming to
including stra
shapes and lannealed bla
supports, cha
including solitions
of ISI approve
coting
ali | aighten
length
ick wir
iirs, spa
ed supe | vant
ing,
as p
e ar
acers
er du
mm | clea
er d
nd p
s etc.
ctile
dia
2
3 | ing
Co
aning
etail
lacir
con
TM1 | in pode fo
g, cutt
s, sup
ng in in
npletei
l'bar (i | osition R. ing plyin positi (upto ii) Ot | on re
C.C.
and b
g and
ion wi
1st flo
her ISI | work
bind
th p
cor le
mai | cement
c/R.B. w
ng to p
ding with
roper blavel).
rked
441.60
102.00 | barr
valling
rope
200
ocks | s
: | | 60.12 | 518.62 | 83041.4 | | s a s b F | conforming to
including stra
shapes and lannealed bla
supports, cha
including solitions
of ISI approve
coting
ali | aighten
length
ick wir
iirs, spa
ed supe | vant
ing,
as p
e ar
acers
er du
mm | clea
er d
nd p
s etc.
ctile
dia
2
3 | ing
Co
aning
etail
lacir
con
TM1
x | in p ode fo cutt s, sup ig in i nplete bar (i 8 4 4 | osition R. ing plyin posit (upto x x x | on re
C.C.
and b
g and
ion wi
1st flo
her ISI
1.20
8.50 | work bind th p oor le mai | cement
c/R.B. with
roper blavel).
rked
441.60
72.80 | barr
valling
rope
200
ocks
RM
RM | s
: | | 60.12 | 518.62 | 83041.4 | | s a s b F | conforming to
including stra
shapes and lannealed bla
supports, cha
including solitions
of ISI approve
coting
ali | aighten
length
ick wir
iirs, spa
ed supe | vant
ing,
as p
e an
icers
er du | clea
er d
nd p
s etc.
ctile
dia
2
3 | ing
Co
aning
etail
lacir
con
TM1
x
x | in p pode fo cutt s, sup ng in i nplete bar (i 8 4 4 4 | osition r R. ing plyin position (upto ii) Ott | on re
C.C.
and b
g and
ion wi
1st flo
her ISI
1.20
8.50
9.10 | work bing th p oor le mai | cement
of R.B. wing to p
ding with
roper blavel).
rked
441.60
102.00
72.80
57.60 | PAMERM RM | s
: | | 60.12 | 518.62 | 83041.4 | | s
a
s
b
F | conforming to
including stra
shapes and lannealed bla
supports, cha
in ISI approve
coting
ali
intel | aighten
length
ick wir
iirs, spa
ed supe | vant
ing,
as p
e an
acers
er du | clea
er
d
er d
s etc
ctile
dia
2
3
2
4 | ing
Co
etail
lacir
con
TM1
×
× | in p ode fo cutt s, sup ig in i nplete bar (i 8 4 4 | osition R. ing plyin position (upto ii) Ott | on re
C.C.
and b
g and
ion wi
1st flo
her ISI
1.20
8.50
9.10
3.60 | work bind th p cor le mai | cement
of R.B. wing to p
ding with
roper blavel).
rked
441.60
102.00
72.80
57.60
12.00 | RM
RM
RM
RM | s
: | | 60.12 | 518.62 | 83041.4 | | s
a
s
b
Fi | conforming to
including stra
shapes and lannealed bla
supports, cha
including solitions
of ISI approve
coting
ali | aighten
length
ick wir
iirs, spa
ed supe | ing,
as p
e an
acers
er du | clea
er d
er d
s etc.
ctile
dia
2
3
2
4
1 | ing
Coaning
etail
lacir
con
TMT
x
x
x
x | in p pode fo cutt s, sup ng in i nplete bar (i 8 4 4 4 | osition R. ing plyin position (upto x x x x x x | 00 re
C.C.
and b
g and
ion wi
1st flo
her ISI
1.20
8.50
9.10
3.60
3.00
1.50 | work bind th p oor le mai | cement
c/R.B. w
ng to p
ding with
roper blanch
evel).
rked
441.60
102.00
72.80
57.60
12.00
12.00 | RM
RM
RM
RM
RM
RM | s
: | | 60.12 | 518.62 | 83041.4 | | s
a
s
b
F | conforming to
including stra
shapes and lannealed bla
supports, cha
in ISI approve
coting
ali
intel | aighten
length
ick wir
iirs, spa
ed supe | vant
ing,
as p
e an
e an
e an
e an
e an
e an
e an
e an | clear d
and p
setc.
ctile
dia
2
3
3
2
4
1
1
2
2
3
3 | ing Co
caning
etail
lacir
con
TM1
x
x
x
x | in p ode fo cutt s, sup ig in i nplete bar (i 8 4 4 4 4 | osition R. ing plyin position (upto ii) Otto x x x x x | 00 re
C.C.
and b
g and
ion wi
1st flo
her ISI
1.20
8.50
9.10
3.60
3.00
1.50
8.50 | work bind th p oor le mai | cement
c/R.B. w
ng to p
ding with
roper bl
evel).
rked
441.60
102.00
72.80
57.60
12.00
102.00 | rope
200
ocks
RM
RM
RM
RM
RM
RM | s
: | | 60.12 | 518.62 | 83041.4 | | s
a
b
F | conforming to
including stra
shapes and lannealed bla
supports, cha
in ISI approve
coting
ali
intel | aighten
length
ick wir
iirs, spa
ed supe | ing,
as p
e an
acers
er du | clear d
and p
setc.
ctile
dia
2
3
3
2
4
1
1
2
2
3
3 | ing Co
caning
etail
lacir
con
TM1
x
x
x
x
x | in pode for cutton s. suppletel from for (if the state of | ositic
r R.
ing
plyin
posit
(upto
x
x
x
x
x | 00 re
C.C.
and b
g and
ion wi
1st flo
her ISI
1.20
8.50
9.10
3.60
3.00
1.50
8.50
9.10 | work
endi
bino
th poor le
I man | cement
c/R.B. w
ng to p
ding with
roper blavel).
rked
441.60
102.00
72.80
12.00
12.00
72.80
72.80 | RM
RM
RM
RM
RM
RM | s
: | | 60.12 | 518.62 | 83041.4 | | s a s b Fi | conforming to
including stra
shapes and I
annealed bla
supports, cha
o) ISI approve
coting
ali ;
intel | aighten
length
ick wir
iirs, spa
ed supe | vant
ing,
as p
e an
e an
e an
e an
e an
e an
e an
e an | cleared point poin | ing Conning etail lacir con TMT x x x x x x x x x x x x x x x x x x | in pode for cutted from the cutter of cu | ositic
r R.
ing
plyin
positi
(upto
x
x
x
x
x
x | n re
C.C.
and b
g and
ion wi
1st flo
her ISI
1.20
8.50
9.10
3.60
3.60
8.50
9.10
1.50
8.50
9.10 | work endi bino th p or k I mai | cement
c/R.B. w
ng to p
ding with
roper blavel).
rked
441.60
102.00
72.80
12.00
12.00
72.80
12.00
12.00
72.80
12.00 | RM
RM
RM
RM
RM
RM
RM
RM
RM
RM | s
: | | 60.12 | 518.62 | 83041.4 | | s a s b Fi | conforming to
including stra
shapes and lannealed bla
supports, cha
in ISI approve
coting
ali
intel | aighten
length
ack wir
lirs, spa
ed supe
10
23 x | vanting, as pe arrival and a special s | clearer d p clearer dia | ing Co
coning
etail
lacir
con
TMT
x
x
x
x
x
x
x
x | in pode for cutton s. suppletel from for (if the state of | ositic
r R.
ing
plyin
posit
(upto
x
x
x
x
x | 00 re
C.C.
and b
g and
ion wi
1st flo
her ISI
1.20
8.50
9.10
3.60
3.00
1.50
8.50
9.10 | work
endi
bino
th poor le
I man | cement
c/R.B. w
ng to p
ding with
roper blavel).
rked
441.60
102.00
72.80
12.00
12.00
72.80
72.80 | RM
RM
RM
RM
RM
RM
RM
RM
RM
RM | s
: | | 60.12 | 518.62 | 83041.4 | | s a s b Fi | conforming to
including stra
shapes and I
annealed bla
supports, cha
o) ISI approve
coting
ali ;
intel | aighten
length
ack wir
lirs, spa
ed supe
10
23 x | vanting, as pe an e | clearer d p clearer dia dia 22 d d d d d d d d d d d d d d d d d d | ing Co | in pode for cutted for cutters, suppose for cutters fo | ositic
r R:
ing
plyin
positi
(upto
x
x
x
x
x
x | n re
C.C.
and b
g and
ion wi
1st flo
1.20
8.50
9.10
3.60
3.60
1.50
8.50
9.10 | work endi bing th p oor le I mai | cement
c/R.B. w
ng to p
ding with
roper blands
evel).
rked
441.60
102.00
72.80
12.00
12.00
12.00
12.00
12.00
14.40 | RM
RM
RM
RM
RM
RM
RM
RM
RM
RM
RM
RM
RM
R | s
: | | 60.12 | 518.62 | 83041.4 | | s a a s b FF J.i. Li | conforming to
including stra
shapes and I
annealed bla
supports, cha
o) ISI approve
coting
ali ;
intel | aighten
length
ack wir
lirs, spa
ed supe
10
23 x | vanting, as pe arranger du mm 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | cleared dia etc. ctile dia 22 4 4 1 2 2 3 3 2 2 4 4 1 1 2 2 3 3 2 2 4 4 1 1 2 2 3 3 2 2 4 4 1 1 2 2 3 3 2 2 4 4 1 1 2 2 3 3 2 2 4 4 1 1 2 2 3 3 3 2 2 4 4 1 1 2 2 3 3 3 2 2 4 4 1 1 2 2 3 3 3 2 2 4 4 1 1 2 2 3 3 3 2 2 4 4 1 1 2 2 3 3 3 2 2 4 4 1 1 2 2 3 3 3 2 2 4 4 1 1 2 2 3 3 3 2 2 4 4 1 1 2 2 3 3 3 2 2 4 4 1 1 2 2 3 3 3 2 2 4 4 1 1 2 2 3 3 3 2 2 4 4 1 1 2 2 3 3 3 2 2 4 4 1 1 2 2 3 3 3 3 2 2 4 4 1 1 2 2 3 3 3 3 2 2 4 4 1 1 2 2 3 3 3 3 2 2 4 4 4 1 1 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | ing Co
Co
etail
lacir
con
TM1
x
x
x
x
x
x
x
x | in pode for joint pod | ositic
r R
ing
plyin
positi
(upto
x
x
x
x
x
x | n re
C.C.
and b
g and
ion wi
1st flo
her ISI
1.20
8.50
9.10
3.60
3.60
1.50
8.50
9.10
1.50
4.90 | work endi bing th p oor le I mai | cement
c/R.B. w
ng to p
ding with
roper blanch
evel).
rked
441.60
102.00
72.80
12.00
12.00
12.00
12.00
14.40
450.80 | RM
RM
RM
RM
RM
RM
RM
RM
RM
RM
RM
RM
RM
R | s
: | | 60.12 | 518.62 | 83041.4 | | s a s b FF J.i. Li | conforming translation of the conforming stranslation of the conforming ali control costplate | aighten
length
ack wir
lirs, spa
ed supe
10
23 x | vanting, as pe arranger du mm 1 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | cleared dia etc. ctile dia 22 44 11 22 33 3 2 2 4 4 1 1 2 2 3 3 3 2 2 4 4 1 1 2 2 3 3 3 2 2 4 4 1 1 2 2 3 3 3 2 2 4 4 1 1 2 2 3 3 3 2 2 4 4 1 1 2 2 3 3 3 2 2 4 4 1 1 2 2 3 3 3 2 2 4 4 1 1 2 2 3 3 3 2 2 4 4 1 1 2 2 3 3 3 2 2 4 4 1 1 2 2 3 3 3 2 2 4 4 1 1 2 2 3 3 3 2 2 4 4 1 1 2 2 3 3 3 2 2 4 4 1 1 2 2 3 3 3 2 2 4 4 1 1 2 2 3 3 3 3 2 2 4 4 1 1 2 2 3 3 3 3 2 2 4 4 1 1 2 2 3 3 3 3 2 2 4 4 1 1 2 2 3 3 3 3 2 2 4 4 1 1 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | ing Co
Co
etail
lacir
con
TM1
x
x
x
x
x
x
x
x
x | in pode for cutton s. suppode for for finding in poleter for for finding in f | ositic
r R
ing
plyin
positi
(upto
x x x x x x x x x x x x x x x x x x x | n re
C.C. and b
g and ion wi
1st flo
her ISI
1.20
8.50
9.10
3.60
3.60
1.50
8.50
9.10
1.50
3.60
4.90
8.50 | work pendibino the poor let i mai | cement
c/R.B. w
ng to p
ding with
roper blanch
evel).
rked
441.60
102.00
72.80
12.00
12.00
12.00
12.00
12.00
14.40
450.80
102.00 | PAMENT RIMER | s
: | | 60.12 | 518.62 | 83041.4 | | s a s b FF J.i. Li | conforming translation of the conforming stranslation of the conforming ali control costplate | aighten
length
ack wir
lirs, spa
ed supe
10
23 x | vanting, as pe arranger du mm 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | clearer d p p etc. ctile dia 2 2 3 3 2 2 4 4 1 1 2 2 3 3 2 2 4 4 1 1 2 2 3 3 2 2 2 4 4 1 1 2 2 2 3 3 3 2 2 2 3 3 3 3 3 3 3 3 3 | ing Co
Co
etail
lacir
con
TM1
x
x
x
x
x
x
x
x
x
x | in pode for cutton s. suppode for for final state of the | ositic
r R
ing plyin
positic
(upto
x x x x x x x x x x x x x x x x x x x | n re
C.C. and b
g and ion wi
1st flo
her ISI
1.20
8.50
9.10
3.60
3.60
9.10
1.50
9.10
1.50
9.10
4.90
8.50
9.10 | work pendibing the poor let a series and series and the poor let a series and the poor let a | cement
c/R.B. w
ng to p
ding with
roper blavel).
rked
441.60
102.00
72.80
12.00
12.00
12.00
12.00
14.40
450.80
102.00
72.80 | RM
RM
RM
RM
RM
RM
RM
RM
RM
RM
RM
RM
RM
R | s
: | |
60.12 | 518.62 | 83041.4 | | s a s b FF J.i. Li | conforming translation of the conforming stranslation of the conforming ali control costplate | aighten
length
ack wir
lirs, spa
ed supe
10
23 x | vanting, as pe arranger du mm 1 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | cleared dp point dia 22 33 22 44 11 22 33 32 32 32 32 32 32 32 32 32 32 32 | ing Co
Co
aning
etail
lacir
con
TM1 | in pode for cutto s. suppode for in poleter for file and a suppode f | ositic
r R
ing plyin
positic
(upto
x x x x x x x x x x x x x x x x x x x | n re
C.C. and b
g and ion wi
1st flo
1.20
8.50
9.10
3.60
9.10
1.50
8.50
9.10
1.50
3.60
4.90
8.50
9.10
3.60 | work endibing th poor le mai | cement
c/R.B. w
ng to p
ding with
roper blanch
evel).
rked
441.60
102.00
72.80
12.00
12.00
12.00
12.00
14.40
450.80
102.00
72.80
57.60 | RM
RM
RM
RM
RM
RM
RM
RM
RM
RM
RM
RM
RM
R | s
: | | 60.12 | 518.62 | 83041.4 | | s a s b FF J.i. Li | conforming translation of the conforming stranslation of the conforming ali control costplate | aighten
length
ack wir
lirs, spa
ed supe
10
23 x | vanting, as pe an acers or du mm ace | cleared dp post etc. etc. etc. etc. etc. etc. etc. etc | ing Co
Co
aning
etail
lacir
con
TM1 | in pode for cutton s, suppode for for file s, suppode | ositic
r R
ing
plyin
oositi
(upto
x x x x x x x x x x x x x x x x x x x | n re
C.C. and b
g and ion wi
1st flo
her ISI
1.20
8.50
9.10
3.60
3.60
4.90
8.50
9.10
1.50
3.60
3.60
3.60
3.60
3.60
3.60 | work pendibing the poor let a series and series and the poor let a series and the poor let a | cement
c/R.B. w
ng to p
ding with
roper blands
441.60
102.00
72.80
12.00
12.00
12.00
14.40
450.80
102.00
72.80
57.60
102.00
72.80
57.60
102.00 | RM
RM
RM
RM
RM
RM
RM
RM
RM
RM
RM
RM
RM
R | s
: | | 60.12 | 518.62 | 83041.4 | | s a s b Fr J. Li | conforming to
including stra
shapes and I
annealed bla
supports, cha
i) ISI approve
coting
ali ;
intel | aighten
length
ack wir
lirs, spa
ed supe
10
23 x | vanting, as pe arranger du mm 1 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | clearer d p p p p p p p p p p p p p p p p p p | ing Co
Co
aning
etail
lacir
con
TM1 | in pode for cutto s, suppode for for file s, suppode s | ositic
r R
ing plyin
positi
(upto
v x x x x x x x x x x x x x x x x x x x | on re
C.C. and b
g and ion wi
1st flo
1.20
8.50
9.10
3.60
3.60
4.90
8.50
9.10
1.50
3.60
3.60
3.60
3.60
3.60
3.60 | work endibing th poor le mai | cement
c/R.B. w
ng to p
ding with
roper blanch
evel).
rked
441.60
102.00
72.80
12.00
12.00
12.00
12.00
14.40
450.80
102.00
72.80
57.60 | RM
RM
RM
RM
RM
RM
RM
RM
RM
RM
RM
RM
RM
R | s
: | | 60.12 | 518.62 | 83041.4 | | s a s b Fr J. Li | conforming translation of the conforming stranslation of the conforming ali control costplate | aighten
length
ack wir
lirs, spa
ed supe
10
23 x | vanting, as pe an acers or du mm ace | cleared dp p setc. ctile dia 2 2 3 3 2 2 4 4 1 2 2 3 3 2 2 4 4 1 2 2 3 3 2 2 2 4 4 1 2 2 3 3 2 2 2 4 4 1 2 2 3 3 2 2 2 4 4 1 4 1 2 2 3 3 3 2 2 2 4 4 1 1 2 2 3 3 3 2 2 2 4 4 1 1 2 2 3 3 3 2 2 2 4 4 1 1 2 2 3 3 3 2 2 2 4 4 1 1 2 2 3 3 3 2 2 2 4 4 1 1 2 2 3 3 3 2 2 2 4 4 1 1 2 2 3 3 3 2 2 2 4 4 1 1 2 2 3 3 3 2 2 2 4 4 1 1 2 2 3 3 3 3 2 2 2 4 4 1 1 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 | ing Co
Co
aning
etail
lacir
con
TM1 | in pode for cutto s, suppode for for file s, suppode s | ositic
r R
ing
plyin
positi
upto
v
x x x x x x x x x x x x x x x x x x x | on re
C.C. and b
g and ion wi
1st flo
1.20
8.50
9.10
3.60
1.50
9.10
1.50
3.60
4.90
8.50
9.10
1.50
3.60
1.50
3.60 | work endibling the poor let a series and s | cement
c/R.B. w
ng to p
ding with
roper blands
441.60
102.00
72.80
12.00
12.00
12.00
14.40
450.80
102.00
72.80
57.60
102.00
72.80
57.60
102.00 | RM R | s
: | | 60.12 | 518.62 | 83041.4 | | S a s b Fr J J L i | conforming to including strain shapes and I annealed blas supports, characteristics octing ali protection intel costplate column are Beam | aighten
length
ack wirr
iirs, spa
ed supe
10
23 x | vanting, as pe arracers or during as pe arracers or during as per | clearer d p p setc. ctile dia 2 3 3 2 4 4 1 2 2 3 3 2 2 4 4 1 2 2 3 3 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | ing Co
caning etail
lacir con
TM1 | in pode for cutton s. suppode for cutton s. suppode for for for finding for | ositic
r R
ing plyin
positic
(upto
x x x x x x x x x x x x x x x x x x x | n re
C.C. and b
g and ion wi
1st flo
her ISI
1.20
8.50
9.10
3.60
3.60
4.90
8.50
9.10
3.60
3.60
3.60
3.60 | work endibing the poor le li mai | cement
c/R.B. w
ng to p
fing with
roper blands
evel).
rked
441,60
102,00
72,80
12,00
12,00
14,40
450,80
102,00
72,80
57,60
12,00
14,00
12,00
14,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00
102,00 | RM R | s
: | | 60.12 | 518.62 | 83041.4 | | S a s b Fr J J L i | conforming to
including stra
shapes and I
annealed bla
supports, cha
i) ISI approve
coting
ali ;
intel | aighten length ack wirriers, spared super 10 23 x | vanting, as pe amacers or dummm as 23 2 2 1 1 2 2 4 1 2 | cleared dia etc. ctile dia 2 3 3 2 4 4 1 2 2 3 3 2 2 4 4 1 2 2 3 3 2 2 4 4 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | ing Co
Co
aning
etail
lacir
con
TM1
x
x
x
x
x
x
x
x
x
x | in pode for pode for cutters, supply in poleter (in poleter) B 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | ositic
r R
ing plyin
positic
(upto
t
x x x x x x x x x x x x x x x x x x x | n re
C.C. and b
g and ion wi
1st flo
her ISI
1.20
8.50
9.10
3.60
3.60
3.60
4.90
8.50
9.10
3.60
3.60
3.60
3.60 | work bendibling the poor let a series and | cement c/R.B. wing to ping with roper blavel). rked 441.60 102.00 72.80 12.00 14.40 450.80 102.00 72.80 57.60 12.00 72.80 57.60 12.00 707.20 899.20 | RM R | s
: | | 60.12 | 518.62 | 83041.4 | | S a s b Fr J J L i | conforming to including strain shapes and I annealed blas supports, characteristics octing ali protection intel costplate column are Beam | aighten
length
ack wirr
iirs, spa
ed supe
10
23 x | vanting, as pe amacers or dummm as 23 2 2 1 1 2 2 4 1 2 | clearer d p p
setc. ctile dia 2 3 3 2 4 4 1 2 2 3 3 2 2 4 4 1 2 2 3 3 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | ing Co
Co
aning
etail
lacir
con
TM1
x
x
x
x
x
x
x
x
x
x | in pode for cutton s. suppode for cutton s. suppode for for for finding for | ositic
r R
ing plyin
positic
(upto
t
x x x x x x x x x x x x x x x x x x x | n re
C.C. and b
g and ion wi
1st flo
her ISI
1.20
8.50
9.10
3.60
3.60
3.60
4.90
8.50
9.10
3.60
3.60
3.60
3.60 | work bendibing the poor le la | cement c/R.B. wing to piding with roper blavel). rked 441.60 102.00 72.80 12.00 14.40 450.80 102.00 72.80 57.60 12.00 72.80 57.60 12.00 707.20 899.20 629.41 | RM R | s
: | | 60.12 | 518.62 | 83041.4 | | S a s b Fr J J L i | conforming to including strain shapes and I annealed blas supports, characteristics octing ali protection intel costplate column are Beam | aighten length ack wirriers, spared super 10 23 x | vanting, as pe amacers or dummm as 23 2 2 1 1 2 2 4 1 2 | cleared dia etc. ctile dia 2 3 3 2 4 4 1 2 2 3 3 2 2 4 4 1 2 2 3 3 2 2 4 4 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | ing Co
Co
aning
etail
lacir
con
TM1
x
x
x
x
x
x
x
x
x
x | in pode for pode for cutters, supply in poleter (in poleter) B 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | ositic
r R
ing plyin
positic
(upto
t
x x x x x x x x x x x x x x x x x x x | n re
C.C. and b
g and ion wi
1st flo
her ISI
1.20
8.50
9.10
3.60
3.60
3.60
4.90
8.50
9.10
3.60
3.60
3.60
3.60 | work bendibling the poor let a series and | cement c/R.B. wing to ping with roper blavel). rked 441.60 102.00 72.80 12.00 14.40 450.80 102.00 72.80 57.60 12.00 72.80 57.60 12.00 707.20 899.20 629.41 390.23 | RM R | s
: | | 12 | 518.62 | 83041.4 | | | (C) I | SI app | prove | d - M | S. Ro | d | 2 | | | | _ | | | | 3 | 4 | | -5 | 6 | |------------|--|---|--|--|--|---|--|--|--|---|--
---|--|--------------|-----|------|-----|--------|----------| | | | rrup | | | mm d | | | | | | | | | | | 1 | | | | | | 0.000 | t upto | | - | | | | | | | | | | | | 1 | - 1 | | 1 1 | | | | t abo | | | 2 | | | 11 | × | 0.90 | | 227 | 70 | RM | | 1 | - 1 | | | | | | Beam | | | 23 | | | 21 | - 36 | 0.45 | = | 217 | 35 1 | RM | | 1 | - 1 | | 1 1 | | | 1.00 | ocaii | | | 3 | | | 57 | × | 1.00 | = | 171. | 00 | RM | | 1 | - 1 | | 1 1 | | | | | | | 2 | | × 1 | 61 | × | 1.00 | # | 122.0 | | 2000 | 0 | 1 | | | | | | | | | | 4 | | х ; | 24 | × | 1.00 | = | 96.0 | | V | | 1 | - 1 | | | | | | | | | 1 | 1 | x : | 20 | × | 1.00 | = | 20.0 | | 31.00 | | 1 | - 1 | | | | | 1.700 | 4 | | | 7 | 3 | x : | 20 | × | 1.00 | = | 20.0 | | | | | -17 | | | | | Linte | 81 | | | 3 | 3 | x . | 57 | × | 0.55 | | 94.0 | | | | 10 | - 1 | | dia I | | | | | | | 2 | , | x 6 | 1 | × | 0.55 | = : | 67.1 | | | | | - 1 | | 1 1 | | | - 1 | | | | 4 | , | x 2 | 4 | × | 0.55 | = | 52.8 | | | | | | | 1 1 | | | | | | | 1 | , | × 2 | 0 | × | 0.55 | | 11.0 | | 0.000 | | 0 | | | | | | | | | | 1 | 3 | 2 | 0 | × | 0.55 | | 11.0 | | | | | | | | | | Post | olate | | | 3 | | | 7 | × | 0.45 | | | | 2000 | | | | | 1 1 | | | | | | | 2 | × | 3 3 | 1 | × | 0.45 | | 76.9 | | | | | | | | | | | | | | 2 | × | 0.00 | | × | 0.45 | | 54.9 | | | | | | | | | | | | | | 1 | × | 2 | 760 | * | | | 18.0 | | O 202 All | | | | | | | | | | | | | ^ | | 1 | * | 0.45 | = | 10 B | R | M | | | | | | | | Tota | Weig | tht | | | a | | 22 | V-IT | | | 1270.65 | | | - 1 | | И | | 1 1 | | | | | | | | 60 | | 22 | ng/h | CDVII | = | 279.54 | | _ | | | Л | | 1 | | 19 | 1.2 Provi | dian | | | | | | | 2000 | | = | 2.80 | Qt | | Qti | 2.80 | 6 | 241.78 | 14676.9 | | | (40mi
concr
the tir
specif
(a) Sa | mx3m
ete bi
nber i
ied. | mx25
ock ir
faces | imm) | and
as p | er
1 ar | ing
desig | n a | nd i | AS fi | at
ded | hold
in ce
ide oili
firected | fa:
mer | st
nt | | | | | | | | (40mi
concr
the tir
specif | mx3m
ete bi
mber i
ied.
if wood
D | mx25
ock in
faces
d | imm)
n pro
in c | ontact | er
4 ar
with | designd with | m and and | nd oco | MS filembed ats of asonry | at
ded | hold
in ce
ide oili
firected | fas
mer
ng to
and
m ³ | st
o
d | | | | | | | | (40mi
concr
the tir
specif
(a) Sa
Doors,
2
2
Doors, | mx3m
ete bl
mber i
ied.
I wood
D
x
x
D ₁ | mx25
ock ir
faces
d | omm)
n pro
in c | 0.15
0.15 | er
4 ar
with
x | designd with C.C. | h two | nd o co | MS filembed ats of asonry | lat
Ided
kinc
as d | hold
in ce
ide oili
firected | fas
mer
ng to
and
m ³ | st
o
d | | | | | | | | (40mi
concr
the tir
specif
(a) Sa
Doors,
2
2
Doors,
5 | mx3m
ete bi
mber i
ied.
il wood
D
x
x
D ₁ | mx25
ock in
faces
d | omm)
n pro
in c | 0.15
0.15 | per
4 ar
with
x | designd with C.C. | with and and | nd oco | MS filembed ats of asonry | lat
Ided
kinc
as d | hold
in ce
ide oilir
firected
0.09
0.02 | fas
mer
ng to
and
m ³ | st
o
d | | | | | | | | (40mi
concr
the tir
specif
(a) Sa
Doors,
2
2
Doors,
5 | mx3m
ete bl
mber i
ied.
I wood
D
x
x
D ₁ | mx25
ock in
faces
d | omm)
n pro
in c | 0.15
0.15 | per
4 ar
with
x | designd with C.C. | with and and | nd oco | MS filembed ats of asonry | lat
Ided
kinc
as d | hold
in ce
ide oilir
firected
0.09
0.02 | fas
mer
ng to
and
m ³
m ³ | st
o
d | | | | | | | 3 5 5 | (40mi
concr
the tir
specif
(a) Sa
Doors,
2
2
Doors,
5 | mx3m
ete bl
mber lied.
Il wood
D x
x
D ₁ x | mx25
ock if
faces
d | omm) n pro in c | 0.15
0.15
0.15 | per 4 an with | 0.07
0.07 | h two | nd oco | MS flembed ats of asonry 2.10 1.00 1.75 | at
ided
kinic
as d
=
= | 0.09
0.24
0.40 | fas
mer
ng t
an
m ³
m ³ | m m | ,3 | 0.40 | 552 | 200.04 | 22080.02 | | 2.6.67 | (40mi
concr
the tir
specif
(a) Sa
Doors,
2
2
Doors,
5 | mx3m
ete bl
mber lied.
Il wood
D x
x
D ₁ x
x
rng, fitt
insert
iss, jo
logeth
groot
nserts
of around all it
1st cl | mx25 ock infaces d 2 1 ting as of ined iner wive of see part of the fitting ass to | ommin pro in co | 0.15
0.15
0.15
0.15
0.15
0.15
exing fairn to
ther with ovicol
im to 1
eather ovidis g with nels concept hir
wood(Hel insertions) | ctor of 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 0.07
0.07
0.07
0.07
0.07
0.07
0.07
0.07 | with and h two and 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | nd occorder was a considered with w | AS fleembed ats of asonry 2.10 1.00 1.00 1.00 1.00 1.00 1.00 1.00 | at ided kinic as constant c | 0.09 0.02 0.24 0.40 0.40 doors to 20 oove jo leaving e edges include x 75mm ize 25m ize 25m include x 75mm ize 25m | market ma | m m | ,3 | 0.40 | 552 | 200.04 | 22080.02 | | C E CON | (40mi concrethe tirespecifical) Sa Doors, 2 2 Doors, 5 5 5 Providir panel thicknee glued to vertical panel in providir 3.55mm x15mm bead arr b) With III) 35mm | mx3m
ete bl
mber lied.
Il wood
D x
x
D ₁ x
x
rng, fitt
insert
iss, jo
logeth
groot
nserts
of around all it
1st cl | mx25 ock infaces d 2 1 ting a s of ined iner wi we of item a furning ass ic | ommin pro in co | 0.15
0.15
0.15
0.15
0.15
0.15
0.15
0.15 | ctor of 5 5 5 5 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | o 0.07
0.07
0.07
0.07
0.07
0.07
y mad
0mm
ontinu
other
m bety
gue ir
M.S.b.
ulded
ete as
s to be
ock / B
of 20m
2.00 | with and h
two and 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | nd o coode mas a coode the a coode to the coode of the cooper the cooper to | AS fleembed ats of asonry 2.10 1.00 2.10 2.10 2.10 2.10 2.10 2.1 | at ided kinic as constant c | 0.09 0.02 0.24 0.04 0.40 doors to 20 oove jo leaving e edges include x 75mr | market ma | m m | ,3 | 0.40 | 552 | 200.04 | 22080.02 | | C (2 a.c.) | (40mi concrethe tirespecifical) Sa Doors, 2 2 Doors, 5 5 5 Providir panel thicknee glued to vertical panel in providir 3.55mm x15mm bead arr b) With III) 35mm | mx3m
ete bl
mber lied.
Il wood
D x
x
D ₁ x
x
rng, fitt
insert
iss, jo
logeth
groot
nserts
of around all it
1st cl | mx25 ock infaces d 2 1 ting a s of ined iner wi we of item a furning ass ic | ommin pro in co | 0.15
0.15
0.15
0.15
0.15
0.15
0.15
0.15 | ctor of 5 5 5 5 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 0.07
0.07
0.07
0.07
0.07
0.07
0.07
0.07 | with and h two and 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | nd o coode mas a coode the a coode to the coode of the cooper the cooper to | AS fleembed ats of asonry 2.10 1.00 1.00 1.00 1.00 1.00 1.00 1.00 | at ided kinic as constant c | 0.09 0.02 0.24 0.40 0.40 doors to 20 oove jo leaving e edges include x 75mm ize 25m ize 25m include x 75mm ize 25m | fas
merrog to
and
m ³ m ³ m ³ with
mm
ints
g as of
ling
mx
ber | m m | ,3 | 0.40 | 552 | 200.04 | 22080.02 | | 1 | | | | | | 2 | | | | | | 3 | 1 4 | 5 | 6 | |---------|--|--|--|-------------------------|-----------------------|--------------------------------|--------------|---|------------|---|---------------------|----------------|---------|---------|-------------| | 3/11/2 | Providing, | fitting | and ! | fixing | ano | dised a | lumi | nium si | liding | windows | s and | 1 | | | - 0 | | Ε | ventilators | of sta | andard | i sec | tions | without | hor | izontal | glazi | ng bars | ipints | d . | 1 | | | | 14,3 | mitred and | weld | ded (m | anuf | actu | red to r | elev | ant IS | spec | fications |) and | 1 | | | | | | providing a | | | | s, an | gle clea | at, ru | ıb | | | | | | | | | | (a) 2 Track | | 0.8700 | | | | | | | | | | | | | | | (i) 6mm gla | ass | W | 9 | × | 1.00 | 1 53 | 1.35 | | 12.15 | 7 1 6 | | | | | | | | | V | 12 | × | 0.45 | × | 1.00 | = | | m° | 38 | | | | | 46.2 | 2 15 mm this | | | 10262 | V-5077 | | | | | 17.55 | m ² | m² | 17.55 | 3793.85 | 66582 0 | | 79.50 | 2 15mm thic | well (| nent p | aste | r in s | ingle o | oat c | on roug | h sid | e of sing | gle or | | | | | | | half brick
arises inte | rnal | cound | erior | piasi | ening t | ib to | ding 9 | DOT H | evel inch | uding | | | | | | | finished ev | en ar | nd sme | ooth i | nclud | fina cur | ina c | complet | te ae | in girin | and | | | | | | | (b) In ceme | ent m | ortar 1 | -4 | .,,,,,,,, | mig car | | or in pro- | 10 00 | directed | | | | | | | | Area same | | | | 17 | | | | 8 | 400 40 | 2 | m² | 1200000 | 5.42 | | | 5/6 2 3 | 3 15mm thic | k ce | ment | olast | er in | single | con | t on f | air ei | 160.12 | mink / | m. | 160.12 | 111.25 | 17813.35 | | | concrete w | all fo | or inte | rior r | plaste | ering u | o to | 1st flo | or le | vel inch | idina | | | | | | | anses inte | rnal i | rounde | ed ar | igles | not ex | cee | dina 8 | 0mm | in girth | and | | | | | | | finished ev | en an | d smc | oth i | nelud | ling cur | ing c | complet | e as | directed | - | | | 1 | | | | (b) In ceme | | | | | | | | | | | | | 1 | | | | | | | me a | s in I | tem No. | 14/6 | 2.2 = | | 160.12 | m" | | | | | | | Add Plinth | Wal | ļ | | | | | | | | | | | 9 | | | | | 1 | × | 2 | × | 36.0 | × | 0.65 | = | 46.80 | | | 0 - 1 | | | | | | 1 | × | 2 | × | 10.9 | × | 0.65 | Ξ. | 14.11 | | | 0 | | | | | | | | | | | | | | 221.02 | 200 | | | | | | | Deduction G | able \ | Vall | | | | 5040 | mer | = | 15.02 | 12/2/25/3 | 100 | | | | | 8/6 2.7 | Evtra over | tom. | 62 | 1.40 | | | Ne | t Qty | = | 206.01 | m² | m ² | 206.01 | 110.21 | 22704.36 | | wo.z.r | Extra over | to 1e | 10 b.Z | 1 10 | 6.2.5
/ion | for pl | aster | ing on | cellin | ig and so | offits | | | | | | | of stairs up
curing com | nlete | as din | ected | (ms | lead or | pias | tering (| on wa | ilis) inclu | ding | | | | | | | Chajja | 2 | | | | | | 2002 | | 512722 | | | | | | | | Challa | 2 | × | 2 | × | 8.5 | × | 0.45 | = | 15.30 | 11/11/2014 | 1.1 | | | | | | | 2 | × | 2 | * | 9.1 | × | | = | 16.38 | 100 | | | | | | | | - | ै | * | * | 1.50 | × | 0.45 | = | 2.70 | | 2 | 80000 | 100.000 | 88000 | | m | Applying pri | mina | coat | over | new | wood h | 200 | deurfo | 000.0 | 34.38 | m- | m ² | 34.38 | 15.05 | 517.42 | | 3.6 | in width/girt | h afte | er and | inclu | dina | prepari | no ti | ne surf: | ace h | ver rou | oblu | | | | | | 17.1 | cleaning oil | grea | se, dir | t and | othe | er foreig | in m | atter s | and a | anerina | and | | | - 1 | | | | knotting. | | | | | | | | | oponing | dillo | | - 1 | - 1 | | | | (b) With rea | dy m | ixed p | aint, | wood | primer | (wh | ite). | | | 1.1 | - 1 | | - 1 | | | 1 | Shutters: | | 10 | | | 1000 | 90,000 | 65.22 | | | | - 1 | | | | | | | 2 | | 2 | × | 2.00 | × | 0.90 | * | 7.20 | m ² | - 1 | - 1 | - 1 | | | | Door D | | | 5 | × | 2.00 | | 0.65 | | 13.00 | | | - 1 | | | | | 100 | 2 | ж. | | | | | | | 20.20 | m ² | m ² | 20.20 | 30.91 | 624.38 | | | D1 | | | | | | | | | | - | - | | 00.01 | | | 6.4 | D1
Applying pri | ming | coat c | ver r | new v | vood ba | ased | surfac | es u | to 100 | mm | | | | 0115-02 | | 1364 | Applying pri
in width an | ming
id gir | coat o | over r | nd ir | ncluding | pre | eparing | the | surface | by | | | | - 11 - 100- | | 18/13 | Applying pri
in width an
thoroughly of | ming
id gir | coat o | over r | nd ir | ncluding | pre | eparing | the | surface | by | | | | | | 18/13 | Applying pri
in width an
thoroughly opapering an | ming
od gir
olean
d kno | coat of
the aft
ing oil,
otting. | over r
er ar | nd ir
ase, | ncluding
dirt and | pre
d oth | eparing
er fore | the | surface | by | | | | | | 18/13 | Applying pri
in width an
thoroughly of
papering and
(b) With rea | ming
id gir
dean
dkno
dy mi | coat of
the aft
ing oil,
otting. | over r
er ar | nd ir
ase, | ncluding
dirt and | pre
d oth | eparing
er fore | the | surface | by | | | | | | 18/13 | Applying pri
in width an
thoroughly of
papering an
(b) With rea
Door frame: | ming
id gir
cleani
d kno
dy mi | coat of
the aft
ing oil,
otting,
ixed pa | over r
er ar
grea | nd ir
ase,
vood | ncluding
dirt and
primer | pred oth | eparing
ner fore
ite). | the | surface | by | | | | | | 18/13 | Applying pri
in width an
thoroughly of
papering an
(b) With rea
Door frame: | ming
id gir
cleani
d kno
dy mi | coat of
the aft
ing oil,
otting,
ixed pa | over r
er ar
grea | nd ir
ase,
vood | ncluding
dirt and
primer | pred oth | eparing
ner fore
ite). | the | surface
natter, s | by
and
M | | | | | | 18/13 | Applying pri
in width an
thoroughly of
papering an
(b) With rea
Door frame: | ming
id gir
cleani
d kno
dy mi | coat of
the aft
ing oil,
otting,
ixed pa | over r
er ar
grea | nd ir
ase,
vood | ncluding
dirt and
primer | pred oth | eparing
ner fore
ite). | the | surface
natter, s | by
and
M
M | | | | | | 18/13 | Applying pri
in width an
thoroughly of
papering an
(b) With rea
Door frame: | ming
id gir
cleani
d kno
dy mi | coat of
the aft
ing oil,
otting,
ixed pa | over r
er ar
grea | nd ir
ase,
vood | ncluding
dirt and
primer | pred oth | eparing
ner fore
ite). | the | surface
natter, s
16.80
8.00
4.00 | M
M
M | | | | | | 18/13 | Applying pri
in width an
thoroughly of
papering an
(b) With rea
Door frame:
2 x
2 x
2 x
2 x | ming
d gir
d kno
dy mi
D
1
1 | coat of
the aft
ing oil,
otting,
ixed pa | over r
er ar
grea | nd ir
ase,
vood | ncluding
dirt and | pred oth | eparing
ner fore
ite). | the | surface
natter, s | by
and
M
M | | | | | | 18/13 | Applying pri
in width an
thoroughly of
papering an
(b) With rea
Door frame: | ming
d gir
d kno
dy mi
D
1
1 | coat of
the aft
ing oil,
otting,
ixed pa | over r
er ar
grea | nd ir
ase,
vood | primer 2 2 2 1 | pred oth | eparing
ler fore
ite).
2 10
2 0
1 00
0 80 | the eign r | surface
natter, s
16.80
8.00
4.00 | M
M
M
M | | | | | | 1 | | | | | | \$ | 2 | | | | 13.000,010 | | 3 | 4 | 5 | 6 | |-----------|--|--
--|--|--|---|--|--|---|--|---|---|-------------------|--------|---------|---------| | | 5 | x | 1 | ж | 1 | × | 2 | × | 2.0 | = | 20.00 | М | | | | | | | 5 | × | 1 | ж | 1 | × | 2 | × | 1.00 | = | 10.00 | | | | | | | | 5 | × | 1 | × | 1 | × _ | 1 | × | 0.65 | = | 3.25 | _ | | | | *** | | | | | | | | | | - 11 | | T = | 105.65 | | М | 105.65 | 3.29 | 347.59 | | 19/13 6.5 | based
cleanii
paperi | surfa
ng the
ng an | ces v
surfa
d stop | with en
aces o
oping | name
of dirt | l pair
dus | nt to g
t and | ive a | n ever | sha | d and w
de inclu
terials, s | ding | | | | | | | (i) Sur
(a) Ge
paint/f | neral
Verola | purpo | se(As | ian p | aint/l | | | t/ICI pa | aint/J | & N
20.20 | m² | m ² | 20.20 | 45.80 | 925.16 | | | (ii) Sur
(a) Ge | rfaces
neral | up to | 100 | mm v | vidth/ | girth. | | t/ICI pa | aint/J | | | | | | | | | paintri | | | ity sam | e 99 | n Iten | n No.18 | U13 6 | 4 = | | 105.65 | м | M | 105.65 | 5.08 | 536.70 | | + | Irl Co | | | | | | | | | wall | surface | - | | 122.48 | | | | 20/13.2.1 | coat) | to giv | e a s
e sur | mootl
face to | boo
rem | lied o | paque
all dirt. | finis
dust | sh inclu
, morta | uding | thourou
ps and o | ighly
ther | | | | | | | | | Quant | ity san | ie as | in Iter | n No.14 | 4/6.2 | 3 | | 160.12 | | | | | | | | | - | Add fo | r chaj | a. | | | _ | | | 34.38 | | | | | | | 4) | | | | | | | | 1 | | | 194.50
sing ave | | m ² | 194.50 | 6.70 | 1303 15 | | 21/13.3 | powde | er and
th con | d plas
nplete
Quant | ster o | f par
level
ne as | s pa
s as
in Iter
Wall | ste, m | aking
ed ar | g the s | surfa | , with one even
160.12
15.02
145.10 | and
m ²
m ² | m² | 145.10 | 47.42 | 6880 64 | | ONE | Int Ac | white | | conf | of d | | | mer | of and | | d brand | | | 140.10 | 47.42 | 0000004 | | 22/13 2 2 | manu
free f | factur
rom r
ring th | e on
nortai
ne sur | wall s
r drop
face e | urfac
ings
even | e after
and
and s | er thou
other | roug
forei
apere | hly bru
gn ma
ed smo | ishing
tter a | the sui | face
iding | | 145 10 | 29.69 | 4308.02 | | . P.V. | Tel Di | | | | | | 11 140.2 | | | | 445 40 | | | 140:10 | 20.00 | | | C. | | | eri il IU | ABJUST C | lieton | | | | 7.7.4 | and | 145.10
manufa | | the second second | | | 4300,02 | | 23/13.2 | even
dropp | shade
ings a
paper | and
e, afte
and o
ed sn | of red
or thou
ther for
nooth. | quired
rough
preign | nper
d sha
nly br
n mai | of appi
ide on
ushing
iter an | new
the
d inc | wall s
wall s
surfac-
luding | surfac
e free | manufa
e to giv
from m
ce even | cture
e an
ortar
and | | | 5,55,00 | | | 23/13 | even
dropp | shade
ings a
paper | and
e, afte
and o
ed sn | of red
or thou
ther for
nooth. | quired
rough
preign | nper
d sha
nly br
n mai | of app
ide on
ushing | new
the
d inc | wall s
wall s
surfac-
luding | surfac
e free | manufa
e to giv
from m | cture
e an
ortar
and | | 145.10 | 39.51 | 5732 90 | | | even
dropp
sand
4 65 mi
of ce
coars
layer
coars
with a
bond | shade
ings a
paper
m thic
ment
e agg
in cer
e agg
a float
@ 2.7 | and or after and or ed sn Quant conciument of the pregating pregati | of red
ir thou
ther for
nooth.
tity sar
nent correte in
te of the
concrete
te of the
coat of | ne as
oncre
on pro
25mr
ete in
size | in Iteleste flor
propio | of applied on ushing ther an No.2 oor cor 3:6 (1 d down 1:1:2) of down nent fi | the d incomplete (12/13. Insisting ceres on) are (100 on) lair nish | brand
wall s
surface
duding
2.2 =
ng of 5
ent : 3
nd 15
ement
d in pa
(using | surface free surface s | manufa
e to giv
from m
ce even | e an
ortar
and
m ²
layer
d : 6
aring
d : 2
shed
y for | m² | 145.10 | 39.51 | | | | even
dropp
sand
4 65 mi
of ce
coars
layer
coars
with a
bond | shade
ings a
paper
m thic
ment
e agg
in cer
e agg
a float
@ 2.7 | and or after and or ed sn Quant conciument of the pregating pregati | of red
in thou
ther for
nooth.
tity same
nent of
rete in
te of s
concre
te of s
coat of
per s | ne as
oncre
on pro
25mr
ete in
size | in Iteleste flor
propio | of applied on ushing ther an No.2 oor cor 3:6 (1 d down 1:1:2) of down nent fi | rover
new
the
d inc
2/13.
nsisti
ceme
h) ar
(1ce
(1ce
h) lai
nish | d brand
wall s
surface
duding
2.2 =
ng of 5
ent : 3
nd 15
ement
d in pa
(using
area) in | surface free surface s | manufar
te to give
from mace even
145.10
n under
rse sand
thick we
arse san
and fini
ent slum | e an
ortar
and
m²
layer
d : 6
aring
id : 2
shed
ry
for
g etc. | m² | 145.10 | 39.51 | | | | even
dropp
sand
4 65 mi
of ce
coars
layer
coars
with a
bond | shade
ings a
paper
m thic
ment
e agg
in cer
e agg
a float
@ 2.7 | and or after and or ed sn Quant conciument of the pregating pregati | of red
in thou
ther for
nooth.
tity same
nent of
rete in
te of s
concre
te of s
coat of
per s | ne as
oncre
on pro
25mr
ete in
size | in Ite | of applied on ushing ther an No.2 oor cor 3:6 (1. d down on 1:1:2 of down on the fire of files | rover
new
the
d inc
2/13.
nsisti
ceme
n) ar
(1cc
n) lai
nish
coor a | wall s
surface
luding
2.2 =
ng of 5
ent : 3
nd 15 i
ement
d in pa
(using
area) in | surface free surface s | manufar
te to give
from made
te even
145.10
n under
rise sand
thick we
arse sand
and fini
ent slum
ng curing | e an
ortar
and
m²
layer
d : 6
aring
id : 2
shed
ry for
g etc. | m² | 145.10 | 39.51 | | | | even
dropp
sand
4 65 mi
of ce
coars
layer
coars
with a
bond | shade
ings a
paper
m thic
ment
e agg
in cer
e agg
a float
@ 2.7
lete a | and or after and or ed sn Quant conciument of the pregating pregati | of red
in thou
ther for
nooth.
tity same
nent of
rete in
te of s
concre
te of s
coat of
per s | ne as
oncre
on pro
25mr
ete in
size | in Ite
in Ite
in Ite
in Ite
in Ite
in Ite
prop
I Omn
t cen
x | of applied on ushing ther an No.2 por cor 3:6 (1.0 down on 1:1:2 n down nent fire of fill | rover new the the dincorrection of the | wall s
surface
luding
2.2 =
ng of 5
ent : 3
nd 15 r
ement
d in pa
(using
urea) in
8.50
3.60 | surface free surface s | manufar
te to give
from made
te even
145.10
n under
rise sand
thick we
arse sand
and fini
ent slum
ng curing | cture e an ortar and m² layer d: 6 aring id: 2 shed ry for g etc. m² m² | m² | 145.10 | 39.51 | | | | Providing fitting ho | etino | and | 2 | | | | - W | 1 | 3 4 | 5 | 6 | |---|--|--|--|--|---|--|---------------------------------|--|-----|--------|---------|----------| | 831 | Providing fitting, hoi fabricated out of M. | Sting | and | fixing o | f roo | of trusse | s in | cluding purlin | ns | | | | | 25/18 | fabricated out of M. | o pis | ICK-II | ibes co | nform | ning to | rele | vant I.S. code | в, | | 1 | | | Col. | no her approved o | resign. | ı an | d draw | mne | inchiefie | | convitation as a | - | | | | | | woods plates. | DOILS | and | nuts a | ort o | no cont | ad . | | - 3 | | - 1 | - 1 | | - 10 | omornate primer | ana | CWO | coate | out is | SPAROUS | A m | manage at the same of | 0.0 | | - 1 | 10 | | - 1 | complete including is | uung i | песе | ssarv cl | eats | etc for | fivin | a ceiling is a | 0 | | 1 | | | | as per design and dr | awing | as | directed | | 010.101 | HAIRI | g centrig joist | s | | | | | | Section-AA | F111100 | | | 10.00 | | | | | | 100 | | | | | | | | | | | | | | | | | - 1 | 65mmm dia(L)-Tata | 107 | | | | | | | | | | | | - 19 | Rafter | 2 | | 4 | X | 5.50 | = | 44.00 m | | | 1// | | | | Tie | 1 | × | 4 | × | 9.10 | = | 36.40 m | | | | | | 11 | Bottom runner | 1 | | 3 | | 8.50 | | | | 1 | 4 | | | - 1 | | | | | | 0.30 | _ | 25.50 m | 4 | | 111 | 1 | | - 1 | | | | | | (540 | | 105.90 m | | 1 | | | | 15 | 50mmm dia(M)-Tata | ē. | | | | A) | = | 604.69 Kg | 1 | | | | | i i | (ing Post | | | | | | | | 1 | | | | | 1 | ring Post | 1 | × | 4 | × | 1.65 | | 6.60 m | 1 | 1 | NI. | 1 | | | | | | | | B) | = | 33.20 Kg | 1 | | | | | 14 | 0mmm dia(M)-Tata | | | | | | | | 1 | | | | | IS | Strut | 2 | × | 4 | × | 1.20 | = | 9.60 m | 1 | 1 - | 1 | 1 | | | | 2 | × | 4 | × | 1,00000000 | = | 16.64 m | 1 | 1 | 1 | 1 | | | | 2 2 2 | × | 4 | 1884 | 1.45 | | | 1 | | 1 | 1 | | P | uriln | 2 | × | - 6 | | | | 11.60 m | | 1 | 1 | 1 | | | | ~ | 10 | | _^ | 10.00 | - | 100.00 m | Į. | 1 | 1 | 1 | | | | | | | | 52% | | 137.84 m | f | | | | | S | ection-BB | | | | | C) | = | 445.22 Kg | | | | | | | | | | | | | | - 555 | | 1 | 1 | 1 | | 0 | 2mm dia (L)-Tata | | | | | | | 1 | | 1 | 1 | | | | after | 2 | × | 2 | × | 2.20 | = | 8.80 m | | | 1 | | | T | | 1 | × | 2 | × | 3.60 | | 7.20 m | 0 | | 1 | li . | | | -Post | 1 | × | 2 | × | | | 1.35 m | 1) | | 17 | | | St | trut | 2 | × | 2 | × | Charter | | | | | | | | Pi | urlin | 2 | × | 3 | | 1.800 | | 3.90 m | | | 1 | | | | | 111-00 | | - 0 | _^_ | 1.000 | _ | 10.80 m | | | | | | | | | | | | 23.7 | | 32.05 m | | | 1 | 10 | | | | Total | and a state | Na article and the | | D) | | 81,41 Kg | | V | 10 | | | | | total | weig | ht = A+1 | B+C+ | D | = | 1164.52 Kg | | M | | 17 | | | | V | -11 | | | | = : | 11.65.08 | QtI | 11.65 | 5875.00 | 68443.7 | | De | ouiding assessed in | On the last | enica | ed Iron | 1 sh | eet roo | ofing | | 300 | 100 | 9010.00 | 00443.7 | | | oviding corrugated | gaiv | Grinas | 11.01 | | | | | | 1.1 | | | | SH | AKTEE / SAIL inclu | idina i | fulfillene | and for | wine. | ***** | 200 | | | | | | | SH | AKTEE / SAIL inclu
L hooks, bolts and n | uts 8 | fitting | and fit | xing | necessa | ary g | alvenised J | | | 1 | | | or
x 3 | AKTEE / SAIL inclu
L hooks,
bolts and n
3 mm thick and 1.6 | uts 8 | fitting
mm
thick | and fix
dia with | xing
bitu | necessa
men wa | ary g | alvenised J
25 mm dia | | | | | | or
x 3 | HAKTEE / SAIL inclu
L hooks, bolts and n
3 mm thick and 1.6
st of roof truss, pu | uts 8
mm | fitting
mm
thick | and fix
dia with | xing
bitu | necessa
men wa | ary g | alvenised J
25 mm dia | | | | | | or
x 3 | HAKTEE / SAIL inclu
L hooks, bolts and n
3 mm thick and 1.6
st of roof truss, pu | uts 8
mm | fitting
mm
thick | and fix
dia with | xing
bitu | necessa
men wa | ary g | alvenised J
25 mm dia | | | | | | SH
or
x :
cos
me | HAKTEE / SAIL inclu
L hooks, bolts and n
3 mm thick and 1.6
st of roof truss, pu
pasured and paid sep | uts 8
mm | fitting
mm
thick | and fix
dia with | xing
bitu | necessa
men wa | ary g | alvenised J
25 mm dia | | | | | | or
x 3
cos
me
(a) | HAKTEE / SAIL inclu L hooks, bolts and n mm thick and 1.6 st of roof truss, pu asured and paid sep 0.45 mm thick | uts 8
mm i
rlin e
parate | fitting
mm
thick | and fix
dia with
limpet
Roof tr | xing
bitu | necessa
men wa | ary g | alvenised J
25 mm dia | | | | | | or
x :
cos
me
(a)
Ser | AKTEE / SAIL inclu L hooks, bolts and n mm thick and 1.6 st of roof truss, pu assured and paid sep 0.45 mm thick c-AA | outs 8
mm
rlin e
parate | fitting
mm
thick | and fix
dia with | xing
bitu
wasi
usse | necessa
men wa | ary g
sher
plet
purli | alvenised J
25 mm dia | | | | | | or
x :
cos
me
(a)
Ser | HAKTEE / SAIL inclu L hooks, bolts and n mm thick and 1.6 st of roof truss, pu asured and paid sep 0.45 mm thick | uts 8
mm i
rlin e
parate | fitting
mm
thick | and fix
dia with
limpet
Roof tr | xing
bitu
wasl
usse | mecessa
men wa
her com
s and p | ary g
sher
purli | alvenised J
25 mm dia
e excluding
n etc.to be | | | | | | SH
or
x :
cos
me
(a)
Sea | tAKTEE / SAIL inclu L hooks, bolts and n 3 mm thick and 1.6 st of roof truss, pu assured and paid sep 0.45 mm thick c-AA c-BB | outs 8
mm
rlin e
parate
2
2 | fitting
mm
thick
tc. (
ely). | g and fix
dia with
limpet
Roof tr
9.40
1.95 | xing
bitu
wasl
usse
x | mecessamen wa
men wa
her com
s and p
5.50 =
2.35 = | ary g
sher
polet
purli | alvenised J
25 mm dia
e excluding
n etc.to be | | 2200 | | | | SH
or
x :
cos
me
(a)
Sei
Sei | AKTEE / SAIL inclu L hooks, bolts and n 3 mm thick and 1.6 st of roof truss, pu assured and paid sep 0.45 mm thick c-AA c-BB | outs 8
mm orlin e
parate | mm
thick
ttc. (ely). | g and fix
dia with
limpet
Roof tr
9.40
1.95 | xing
bitu
wash
usse
x | mecessamen wa
mer com
s and p | ary g
sher
polet
purli | alvenised J
25 mm dia
e excluding
n etc.to be
103.40 m ²
9.17 m ²
112.57 m ² | m² | 112 57 | 335.27 | 37741.34 | | SH
or
x :
cos
me
(a)
Sei
Sei | AKTEE / SAIL inclu L hooks, bolts and n 3 mm thick and 1.6 st of roof truss, pu assured and paid sep 0.45 mm thick c-AA c-BB | outs 8
mm orlin e
parate | mm
thick
ttc. (ely). | g and fix
dia with
limpet
Roof tr
9.40
1.95 | xing
bitu
wash
usse
x | mecessamen wa
mer com
s and p | ary g
sher
polet
purli | alvenised J
25 mm dia
e excluding
n etc.to be
103.40 m ²
9.17 m ²
112.57 m ² | m² | 112 57 | 335.27 | 37741.34 | | SH
or
x 3
cos
me
(a)
See
See | AKTEE / SAIL inclu L hooks, bolts and n mm thick and 1.6 st of roof truss, pu easured and paid sep 0.45 mm thick c-AA c-BB eviding galvd iron ric aplying and fixing ner | outs 8
mm orlin e
parate | mm
thick
ttc. (ely). | g and fix
dia with
limpet
Roof tr
9.40
1.95 | xing
bitu
wash
usse
x | mecessamen wa
mer com
s and p | ary g
sher
polet
purli | alvenised J
25 mm dia
e excluding
n etc.to be
103.40 m ²
9.17 m ²
112.57 m ² | m² | 112 57 | 335.27 | 37741.34 | | SH
or
x 3
cos
me
(a)
See
See
Pro
sup | AKTEE / SAIL inclu L hooks, bolts and n 3 mm thick and 1.6 st of roof truss, pu easured and paid sep 0.45 mm thick c-AA c-BB eviding galvd iron ric applying and fixing nei- directed. | outs 8
mm orlin e
parate | mm
thick
ttc. (ely). | g and fix
dia with
limpet
Roof tr
9.40
1.95 | xing
bitu
wash
usse
x | mecessamen wa
mer com
s and p | ary g
sher
polet
purli | alvenised J
25 mm dia
e excluding
n etc.to be
103.40 m ²
9.17 m ²
112.57 m ² | m² | 112 57 | 335.27 | 37741.34 | | SHOOT X : COST ME (a) Section | AKTEE / SAIL inclu L hooks, bolts and n 3 mm thick and 1.6 st of roof truss, pu easured and paid sep 0.45 mm thick c-AA c-BB eviding galvd iron ric aplying and fixing nei- directed. 0.45 mm thick | outs 8
mm orlin e
parate | mm
thick
ttc. (ely). | g and fix
dia with
limpet
Roof tr
9.40
1.95 | xing
bitu
wash
usse
x | mecessamen wa
mer com
s and p | ary g
sher
polet
purli | alvenised J
25 mm dia
e excluding
n etc.to be
103.40 m ²
9.17 m ²
112.57 m ² | m² | 112 57 | 335.27 | 37741,34 | | Strong (a) Second | AKTEE / SAIL inclu L hooks, bolts and n 3 mm thick and 1.6 st of roof truss, pu assured and paid sep 0.45 mm thick c-AA c-BB aviding galvd iron ric aplying and fixing nei- directed. 0.45 mm thick c-AA | outs 8
mm orlin e
parate | mm
thick
ttc. (ely). | g and fix
dia with
limpet
Roof tr
9.40
1.95 | xing
bitu
was/
usse
x
x
HAK
ews/ | necessamen washer comes and page 5.50 and page 5.35 and page 5.50 pa | ary g
sher
polet
purli | alvenised J
25 mm dia
e excluding
n etc.to be
103.40 m ²
9.17 m ²
112.57 m ²
including
complete | m² | 112 57 | 335.27 | 37741.34 | | Strong (a) Second | AKTEE / SAIL inclu L hooks, bolts and n 3 mm thick and 1.6 st of roof truss, pu easured and paid sep 0.45 mm thick c-AA c-BB eviding galvd iron ric aplying and fixing nei- directed. 0.45 mm thick | outs 8
mm orlin e
parate | mm
thick
ttc. (ely). | g and fix
dia with
limpet
Roof tr
9.40
1.95 | was
was
usse
x
x
HAK
ews/ | necessamen washer comes and part of the come | ary g
sher
polet
purli | alvenised J
25 mm dia
e excluding
n etc.to be
103.40 m ²
9.17 m ²
112.57 m ²
including
complete | m² | 112 57 | 335.27 | 37741.34 | | SHOOT X 3 COST ME (a) Section | AKTEE / SAIL inclu L hooks, bolts and n 3 mm thick and 1.6 st of roof truss, pu assured and paid sep 0.45 mm thick c-AA c-BB aviding galvd iron ric aplying and fixing nei- directed. 0.45 mm thick c-AA | outs 8
mm orlin e
parate | mm
thick
ttc. (ely). | g and fix
dia with
limpet
Roof tr
9.40
1.95 | was
was
usse
x
x
HAK
ews/ | necessamen washer comes and page 5.50 and page 5.35 and page 5.50 pa | ary g
sher
polet
purli | alvenised J
25 mm dia
e excluding
n etc.to be
103.40 m ²
9.17 m ²
112.57 m ²
including
complete | m² | 112 57 | 335.27 | 37741.34 | | | | | | | | | 2 | | | Juras | | | 3 | 4 | 5 | 6 | 1 | |--------------------|--|--|---|---
--|--|--|---|---|--|--|--|----------------|-----------------|--------------|-------|------| | 28/9 3 1 | wrough
flat,ang
two co
cleats. | it, fra
le/ c
ats t
and | med
leats
o une
bolt | hoiste
with to
expos
and | ed and
polt ar
sed su
nuts r | d fix
nd n
urfac
equ | ed in pouts com
ses of t | sitor
plete
he t
flat | n with a
e includ
timber
, angle | spike
ding l
(M.S
clea | ns etc.s
s, nails,
diricide of
flats, a
its wher | M.S
siting
ingle | | | | | | | | (a) Wit | h sal | | | | | | | | | | | | | | | | | | 1 | × | 10 | × | 8.50 | × | 0.075 | х | 0.05 | = | 0.32 | | | | | | | | | 1 1 | × | 10 | X | 9.10 | | 0.075 | × | | | 0.34 | | | | | | | | | 1 1 | × | 2 | × | 3 60 | | | | 100 1000 | | 0.03 | | | | | | П | | | | * | 4 | × | 1.50 | х. | 0.075 | × | 0.05 | - | 0.02 | the same of | m³ | 0.71 | 42229.17 | 29982 | 7. | | 29/7 2.1 | necess
x 12m | ary r
m (h
o tim | nails, n
nollock
nber | wood
k/bon
bead | screv
sum/s
is cor | vs ir
und
nple | ncluding
i) bead
ite as d | 1st
ing | class
includi | local
ng p | ceilling
wood 50
aint ing
pjoist to | mm
two | | | | | | | | | | | | 1 | × | 9.10 | × | 8.50 | = | 77.35 | m ² | | | | | | | | | | | | 1 | × | 1.50 | × | 3,60 | = | 5.40 | | 120 | | Vap4664.0104 | | ļ., | | | | | anno e | | | | | | | | 82.75
pattern | | m ² | 82.75 | 269.44 | 22296 | 11 | | 30/10 2 | spacing | g in
neaded
ed to | fram
ed bol | e all
Its an | round
d nuts | d, s
or :
/R.C | squre o
screws
C.C. | r roi | | M.S. | | with | | | | | | | | Minde | 4.0 | | | | | | | | | | | | | | | | | | Window | | | | 1 | × | 12 | × | | - | 90.00 | | | | | | | | - | Ventila | tor | arge t | hoard | 1
of si | x | 12 | х | 6.00 | * | 72.00
162.00 | Kg
Kg | Kg | 162.00 | 65.55 | 10619 | 110 | | 31/941 | Ventila
Providi | tor
ng b | nsum | timb | of si | x .
ze 2 | 12
00mm | x
x 20 | 6.00
0mm w | ith 1s | 72.00 | Kg
Kg
local
sary
RM
RM
RM | | 162,00 | 65.55 | 10619 | 110 | | | Providi
Hollock
wood s | tor
ng ba
d Bo
crew | nsum
s etc. | timb | of single sin | x ze 2 | 12
00mm
ng fittin
2
4
2
4 | x 20
g ar
x
x
x | 6.00
0mm wind fixin
10.00
5.50
1.50
2.20 | ith 1s
g wit | 72 00
162 00
at class
h neces
20 00
22 00
3 00
8 80
53 80 | Kg
Kg
local
sary
RM
RM
RM
RM | RM | 162.00
53.80 | 65.55 | 10619 | | | 32/15.2.1 31/9.4.1 | Providi
Hollock
wood s
Supply
make,
and oth | ing,
reasoner d
matter | fitting,
onably
efects
alumin
& sar | fixir
com
fixir
s smo
s and
nium
tin fin | of sing and ooth, for with screw | x ze 2 ze 2 ze | 12
200mm
ng fittin
2
4
2
4
sed alu
from shi | x 20
g ar
x x x x mini | 6.00
0mm wind fixin
10.00
5.50
1.50
2.20
1.50
2.20
1.50
2.20 | ith 1s
g with
=
=
=
ings
and c | 72.00
162.00
at class
h neces
20.00
22.00
3.00
8.80 | Kg
Kg
local
sary
RM
RM
RM
RM
oved
laws | RM | | | | | | | Providi
Hollock
wood s
Supply
make,
and oth
necess
natural | ng b. // Bo crew ing, reasoner d ary matting | fitting,
onably
efects
alumin
& sai | fixir
fixir
s smo
s and
nium
tin fin | of sing and ooth, for with screw | x ze 2 | 12
2 4
2 4
sed alu
from sharter sun | x 20
g ar
x x x x mini | 6.00
0mm wind fixin
10.00
5.50
1.50
2.20
1.50
2.20
1.50
2.20 | ith 1s
g with
=
=
=
ings
and c | 72.00
162.00
at class
h neces
20.00
22.00
3.00
8.80
53.80
of appriorners, f | Kg
Kg
local
sary
RM
RM
RM
RM
oved
laws | RM | | | | | | | Providi
Hollock
wood s
Supply
make,
and oth
necess
natural | ng b. // Bo crew ing, reasoner d ary matting | fitting,
onably
efects
alumin
& sai | fixir
fixir
s smo
s and
nium
tin fin | of sing and ooth, for with screw | x ze 2 ze | 12
00mm
ng fittin
2
4
2
4
sed alu
from sha
nter sun
etc. con | x 20
g ar
x x x x mini | 6.00
0mm wind fixin
10.00
5.50
1.50
2.20
1.50
2.20
1.50
2.20 | ith 1s
g with
=
=
=
ings
and c
r scree | 72 00
162 00
at class
h neces
20 00
22 00
3 00
8 80
53 80
of appropries, fews included to b | Kg Kg local sary RM RM RM RM oved flaws iding pright | RM | | | | | | | Providi
Hollock
wood s
Supply
make,
and oth
necess
natural | ng b. // Bo crew ing, reasoner d ary matting | fitting,
onably
efects
alumin
& sai | fixir
fixir
s smo
s and
nium
tin fin | of sing and ooth, for with screw | x ze 2 | 12
2 4
2 4
sed alu
from sharter sun | x 20
g ar
x x x x mini | 6.00
0mm wind fixin
10.00
5.50
1.50
2.20
1.50
2.20
1.50
2.20 | ith 1s
g with
=
=
sings
and c
r scree | 72 00
162 00
at class
h neces
20 00
22 00
3 00
8 80
53 80
of appropries, fews included to b | Kg Kg local sary RM RM RM RM oved flaws iding pright | RM | | | | 1.70 | | | Providi
Hollock
wood s
Supply
make,
and oth
necess
natural
(a) Slice
(i) 300r | ng b:// Bo
crew
ing,
reasoner d
matting | fitting,
onably
efects
alumin
& saidoor | fixir
fixir
s smo
s and
nium
tin fin | of sing and ooth, for with screw | x ze 2 | 12
2 4
2 4
sed alu
from sharter sun | x 20
g ar
x x x x mini | 6.00
0mm wind fixin
10.00
5.50
1.50
2.20
1.50
2.20
1.50
2.20 | ith 1s
g with
=
=
sings
and c
r scree | 72 00
162 00
at class
h neces
20 00
22 00
3 00
8 80
53 80
of appropries, fews included to b | Kg Kg local sary RM RM RM RM oved flaws iding pright | RM | 53.80 | 224.81 | 12094 | 1.70 | | | Providi
Hollock
wood s
Supply
make,
and ott
necess
natural
(a) Slic
(i) 300r | ing, ing, matt | fitting,
onably
efects
alumin
& saidoor
16min | fixir
y smo
s and
nium
tin fin
bolts | of sing and ooth, for with screw | x ze 2 | 12
00mm
ng fittin
2
4
2
4
sed alu
from sha
nter sun
etc. con | x 20
g ar
x x
x x
mini
arp e
k ho | 6.00
0mm wind fixin
10.00
5.50
1.50
2.20
0mm fitt
edges a
oles for
te. (an | ith 1s
g with
=
=
=
ings
and c
scree
nodis | 72.00
162.00
at class
h neces
20.00
3.00
8.80
53.80
of appriorners, f
was included to b | Kg Kg local sary RM RM RM RM oved flaws iding right | RM | 53.80 | 224.81 | 12094 | 1.78 | | | Providi
Hollock
wood s
Supply
make,
and oth
necess
natural
(a) Slice
(i) 300r | ing, ing, matt | fitting,
onably
efects
alumin
& saidoor
16min | fixir
y smo
s and
nium
tin fin
bolts | of sing and ooth, for with screw | x ze 2 | 12
00mm
ng fittin
2
4
2
4
sed alu
from sha
nter sun
stc. con | x 20 g ar x x x mini arp e k ho |
6.00
0mm wind fixin
10.00
5.50
1.50
2.20
0mm fitt
edges a
oles for
te. (an | ith 1s
g with
=
=
=
ings
and c
scree
nodis | 72.00
162.00
at class
h neces
20.00
22.00
3.00
8.80
53.80
of appropries, fews included to b | Kg Kg local sary RM RM RM RM oved flaws lding right Nos. Nos. | RM | 53.80 | 224.81 | 12094 | 1.70 | | | Providi
Hollock
wood s
Supply
make,
and ott
necess
natural
(a) Slic
(i) 300r | ing, ing, matt | fitting,
onably
efects
alumin
& saidoor
16min | fixir
y smo
s and
nium
tin fin
bolts | of sing and ooth, for with screw | x ze 2 | 12
00mm
ng fittin
2
4
2
4
sed alu
from sha
nter sun
stc. con | x 20
g ar
x x
x x
mini
arp e
k ho | 6.00
mm wind fixin
10.00
5.50
1.50
2.20
ium fitt
edges a
oles for
te. (an | ith 1s
g with
=
=
=
ings
and c
scree
nodis | 72 00
162 00
at class
h neces
20 00
22 00
3 00
8 80
53 80
of appropries, fews included to b | Kg Kg local sary RM RM RM RM oved flaws iding pright Nos. Nos. Nos. Nos. Nos. | RM | 53.80 | 224.81 | 12094 | .38 | | | Providi
Hollock
wood s
Supply
make,
and ott
necess
natural
(a) Slic
(i) 300r | ing, ing, reasoner diary in matter than x wer to the control of th | fitting,
onably
efects
alumin
& sai
door
16mi | fixir
com
fixir
y smo
s and
nium
tin fin
bolts | of sing and ooth, for with screw | x ze 2 | 12
00mm
ng fittin
2
4
2
4
sed alu
from sha
nter sun
stc. con | x 20 g ar x x x mini arp e k ho | 6.00
0mm wind fixin
10.00
5.50
1.50
2.20
0mm fitt
edges a
oles for
te. (an | ith 1s
g with
=
=
=
ings
and c
scree
nodis | 72 00
162 00
at class
h neces
20 00
22 00
3.00
53 80
of approrners, f
ws included to b | Kg Kg local sary RM RM RM RM RM Oved flaws iding iright Nos. Nos. Nos. Nos. Nos. | RM | 53.80 | 224.81 | 12094 | 38 | | 4 | | | 2 | | | | | 3 | 4 | 5 | 6 | |---|------------------------------|----|---|---|---|---|--------|--------|----|-------|---------| | | (c) Door handle
(i) 100mm | w | 9 | × | 1 | 2 | 9 Nos. | Each | 9 | 61.09 | 549.81 | | | (ii) 150mm | D | 2 | х | 2 | = | 4 Nos | STATE. | | | | | | 100 | D, | 5 | × | 2 | = | 10 Nos | | | | | | | | | | | | | 14 Nos | Each | 14 | 75.37 | 1055 18 | | Deduct 10% Contractors' Profit = | 790293.03
79029.30 | |--|---| | Add for 20 users Septik Tank = Add for HTW with C.C. platform = Add for internal electrification (5%) of CW = Add for sanitary installation LS = | 711263.72
27348.00
10000.00
35563.19
15000.00 | | GT = | 799174.91 | SAY, 800000.00 Rupees Eight Lakh only CONTRACTOR THE PARTITION #### Estimate for installation of HTW with HP No. 6 & C.C Platform & Drain (As per APHED S.O.R./2008-09 & APWD(Water Supply & Sanitary) S.O.R./2010-11) #### ANNEXURE - A LABOUR CHARGE | SI No. | Item of work | Unit | Qnty | Rate, Rs. | Amount, Rs. | |----------|--|------|-------|-----------|-------------| | 1 | 2 | 3 | 4 | 5 | 6 | | 1/2 1 1 | Labour charge for making bore hole of 40 mm dia G.I. pipe up to required depth below ground level and collecting sample of soil at every 3.0 m depth or wherever there is a change of strata in sample boxes with the distinguishing marks including arranging and carriage of necessary boring materials / tools etc. and withdrawing the pipe for lowering well assembly etc. all complete as directed | | 23.00 | 53.90 | 1,239.70 | | 2/2 2 1 | Labour charge for sinking, lowering, fitting, fixing in position 40 mm dia G.I. pipe with 40 mm dia strainer placed in potable water bearing layer with40 mm dia cone at the bottom of the tube well, washing the bore well etc. and supplyingnecessary jointing materials cutting and threadingthe pipe complete including carriage of materialsand cleaning and priming the tube well allcomplete as directed. | m | 18.00 | 12.50 | 225.00 | | 3/2 5 1 | Labour charge for fitting, fixing force and lift/shallow well hand pump with necessary clamps, nuts, bolts etc firmly on the top of the pedestal including cutting, threading the pipe as necessary with local carriage of materials and commissioning the pump all complete as directed. | Each | 1 | 48.40 | 48.40 | | 4/2 11.1 | Construction of plate form of conventional tube well with cement concrete works in proportion 1.2.4 of 1.50m dia (outside to outside) in two layers with a base layer of concrete of proportion 1.4.8 as per approved drawing No. C.E.(PHE)- 03/05 including necessary earth work and refilling after completion of work all complete as directed. | Each | 1 | 1,929.80 | 1,929.80 | | 5/2 11.5 | Construction of drain with cement concrete works in
proportion 1.2.4 in slope 1.50 with a base layer of
concrete of proportion 1.4.8 as per respective
approved drawings including necessary earth work
and refilling after completion of work allcomplete as
directed. | m | 1.0 | 282.00 | 282.00 | #### ANNEXURE - B COST OF MATERIALS | Si No. | Item | Unit | Onty | Rate | Amount | |--------|---|------|------|--------------|--------------| | 1 | Maya hand Pump Hand Pump No. 6 for 40mm dia
tube well with all accessories (as per PWD rate) | Each | 1 | Rs. 1,794.99 | Rs. 1,794.99 | | 2 | 40 mm dia GI Pipe (as per PHE rate) | m | 18.0 | Rs. 195.30 | Rs. 3,515.40 | | 3 | 40 mm dia BJ Strainer (as per PHE rate) | Each | 1 | Rs. 911.10 | Rs. 911.10 | | 4 | 40 mm dia C.I. Cone | Each | 1 | Rs. 20.00 | Rs. 20.00 | | | | | | | | otal = Rs. 6.241.49 #### ABSTRACT OF COST FOR 1(ONE) NO. OF HTW Total = Rs. 9,966.39 SAY, Rs. 10,000.00 Rupees Ten Thousand only SOIL PARA ZE A PARISHAD ## Detailed Estimate for the Septic Tank 20 Users Earth work in excavation for foundation trenches of u (Schedule of Rates for PWD Building (Civil words) 2010-11) | // | | retaining wall, column etc. including refilling the quantity as necessary after completion of the work, breaking clods in return filling, dressing, watering and ramming etc. and removal of surplus earth with all lead and lifts as directed and specified | | | | | |-----|-------|--|--------------------|-------------|--|--| | 2 | 4.1.1 | Providing soiling in foundation and under floor with stone / best quality picked jhama brick, sand packed and laid to level and in panel after preparation of sub gradeas directed including all cost of labour and materials and if necessary dewatering complete a) Brick flat soling 1x 3.65 x 1.60 = 5.84 m2 | Rs.64.67 Rs.415.18 | | | | | - 4 | 2.1.1 | Particular and the control of co | Rs.286.37 | Rs.1,672.40 | | | | | 2.1.1 | Plain cement concrete works with coarse aggregate of sizes 13mm to 32mm in foundation bed for footing steps, walls, brick work etc. as directed and specified including dewatering if necessary, and curing complete (shutterin where necessary shall be measured and paid separately) a) In prop. 1.3:6 1x 3.65 x 1.60x 0.10 = 0.58 m3 | | | | | | 4 | 2.2.1 | Providing and laying plain/ reinforced cement concrete work in
prop. 1:2.4 (1 cement : 2 coarse sand : 4 graded stone
aggregate, 20mm down)
including dewatering if necessary, and
curing compelte but excluding cost of form work and
reinforcement for reinforced cement concrete work. | Rs.3,733.00 | Rs.2,165,14 | | | | | | a) In Substructure upto plinth level | | | | | | | | Foundation, footing, columns with base tie and plinth beam, pile cap, base slab, retaining wall, walls of septic tank, inspection pit | | | | | | | | and the like and other works not less than 100mm thick up to plinth level | | | | | $= 0.16 \, \text{m}$ 3 $= 0.02 \, \text{m}$ 3 T = 0.18 m3 5 4.1.4 Brick work in cement mortar with 1st class brick including racking ut joint and dewatering if necessary, curing complete as directed in sub-structure utpo plinth level b) In prop. 1:4 1x 2.70x 0.90x 0.065 1x 1.00x 0.15x 0.15 2x 3.45x 0.25x 1.35 = 2.33 m3 2x 0.90x 0.25x 1.35 = 0.61 m3 1x 0.90x 0.125x 1.05 = 0.12 m3 1x 0.90x 0.125x 1.05 = 0.12 m3 = 3.17 m3 Rs.4,401.57 Rs.13,952.98 Rs.852.15 Rs.4,734.15 6 6.2.2 15mm thick cement plater in single coat on rough side of single or half brick wall for interrior plastering upto 1st Floor level including arises, internal rounded angles not exceeding 80mm girth, including curing complete as directed. b) In Cement mortar 1:4 7 25.12 Providing precast RCC slab in prop. 1:2:4 reinforced with 10mm bars @ 150mm cement both ways tying with 20 gauge annealed wire with necessary shuttering including fixing b) 75mm thick slab 1 x 1x 3.45x 1.40 = 4.83 m2 Rs.95.10 Rs.288.15 Rs.1,085.06 Rs.5,240.84 ANNEXURE - C - 8 5.1.10 Cement plaster skirting with cement mortar 1:3 finished with a floating coat of neat cement including rounding of junction with floor - a) 15mm thick | 2 x | 1x | 2.70x | 1.35 | = 7.29 m2 | |-----|----|-------|------|-----------| | 3 x | 2x | 0.90x | 1.20 | = 6.48 m2 | | 1 x | 1x | 2.70x | 0.90 | = 2.43 m2 | | | | | | 16.20 m2 | Rs.170.47 Rs.2,761.61 Total Cost = Rs.27,348.45 (Rupees Twenty even Thousand Three Hundred Forty Eight & Paise forty five only) GOTT PARA 25 A PARISHAD CAHEBRAS A 115 COLORES # DRAWN BY BRICK BATS OR DRY CHARGOUS SOAK PIT SECTION SOAK PIT PLAN SEPTIC TANK WITH SOAK PIT 450 to 388 HAT BRITK STUNG - PRICAST REFE SERBINE 2 + WITH COLD AND COMPANY -CC WORKE N. 5 4.1. WORKLO.4 # GRECE STITE STATE LONG SECTION HUIS -PLAN - TOPON W. -KUC TERMA HERNAMA WANTED BY 0 10 - 522 -- * ALL DIMENSIONS ARE IN MM Partia veta Sansak Je Engineer Partim Kaliabor Development Block Missa Nagaon Assam